scholarly journals 3D survey and metric analysis of the Late Roman Fort of Umm al-Dabadib (Egypt)

ACTA IMEKO ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 57
Author(s):  
Fausta Fiorillo ◽  
Corinna Rossi

This paper presents a metric analysis and interpretation of the 3D survey of the Late Roman Fort of Umm al-Dabadib (Kharga Oasis, Egypt). The aim is to verify if a modular measure was used in the construction of the Fort and whether this was congruent with Roman or Egyptian units of measurement. Horizontal and vertical sections were extracted from the 3D model of the Fort derived from a close-range photogrammetry survey method. The resulting technical drawings were used for the study and interpretation of the dimensional patterns of the Fort that revealed the correspondence<strong> </strong>of the units of measurement of the building to Egyptian Reformed Cubit. This research is part of the project LIFE (Living in a Fringe Environment), funded by the ERC CoGrant 68167.

2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


Author(s):  
L. Jurjević ◽  
M. Gašparović

Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.


2012 ◽  
Vol 263-266 ◽  
pp. 2393-2398
Author(s):  
Wei Zeng ◽  
Si Dong Zhong ◽  
Yuan Yao ◽  
Zhen Feng Shao

Close-range photogrammetry is a technique of calculating the location, size and shape of measured object by photography whose object distance is generally not greater than 300 meters. Three-dimensional (3D) model reconstruction based on close-range photogrammetry has higher efficiency than that based on Light Detection And Ranging (LiDAR) technique since acquiring texture data simultaneously. This technology reduces the consuming time of 3D model reconstruction, while ensuring high precision. In this paper, processes and key technologies of 3D model reconstruction based on portable close-range photogrammetry are provided, and it feasibility of the technology is verified via taking Taizhou TV Tower as an example.


2018 ◽  
Vol 63 ◽  
pp. 00013
Author(s):  
Tadeusz Widerski ◽  
Karol Daliga

The article presents a comparison of obtained models of a test object. Close range photogrammetry was used to obtain 3D models. As test object was used one of the rooms located in Wisłoujście Fortress in Gdańsk, Poland. Different models were obtained by using different distribution and number of reference points. Article contains analysis of differences between coordinates of control points obtained from total station measurements and estimated from different 3D models.


2021 ◽  
Vol 47 (1) ◽  
pp. 45-53
Author(s):  
Mariem A. Elhalawani ◽  
Zaki M. Zeidan ◽  
Ashraf A. A. Beshr

The development of applied geodetic techniques for mapping and documentation of historical structures, buildings and sites is an important and vital purpose for contribution of any recording of cultural heritage for any country such as Egypt. This is done to preserve and restore any valuable architectural or other cultural monument, as a support to architectural, archaeological and other art-historical research throughout the ages. The purpose of this paper is to use close range photogrammetry technique (CRP) to reconstruct 3D model of architectural and historical mosque facade and comparing the accuracy of using digital commercial non-metric cameras with different resolutions and metric camera with flatbed scanner and photogrammetric scanner for architectural building documentation. El-Nasr Mosque façade in Mansoura city, Egypt was chosen as a case study in this paper. At first, twenty five points were selected at mosque façade at different elevations and distributed at different façade surfaces and observed using total station. Some of these points were selected as control points and the others were selected as check points to validate the results. Effect of control point’s number on image processing and analysis is also studied. Three cameras positions were selected for imaging to get the full details of mosque façade. Close range Digital Workstation (CDW) program was used for processing and analysis of multiple images. The results are indicated that close range photogrammetry using metric camera with photogrammetry scanner instead of flatbed scanner in technique is accurate enough to be beneficial in 3D architectural building documentation. Digital cameras with CRP technique give up different accuracy that depends mainly on the resolution of cameras and camera specifications.


Author(s):  
M. Lo Brutto ◽  
D. Ebolese ◽  
G. Dardanelli

The photogrammetric survey of architectural Cultural Heritage is a very useful and standard process in order to obtain accurate 3D data for the documentation and visualization of historical buildings. In particular, the integration of terrestrial close-range photogrammetry and Remotely Piloted Aircraft Systems (RPASs) photogrammetry allows to create accurate and reliable 3D models of buildings and to monitor their state of conservation. The use of RPASs has indeed become more popular in Cultural Heritage survey to measure and detect areas that cannot normally be covered using terrestrial photogrammetry or terrestrial laser scanner.<br> The paper presents the results of a photogrammetric survey executed to document the monumental complex of <i>Villa Lampedusa ai Colli</i> in Palermo (Italy), one of the most important historical buildings of the town. An integrated survey by close-range photogrammetry and RPAS photogrammetry was planned and carried out to reconstruct the 3D digital model of the monumental complex. Different images configurations (terrestrial, aerial nadiral, aerial parallel and oblique to the façades) have been acquired; data have been processed to verify the accuracy of the photogrammetric survey as regards the camera calibration parameters and the number of Ground Control Points (GCPs) measured on building façades.<br> A very detailed 3D digital model and high-resolution ortho-images of the façades were obtained in order to carry out further analysis for historical studies, conservation and restoration project. The final 3D model of <i>Villa Lampedusa ai Colli</i> has been compared with a laser scanner 3D model to evaluate the quality of the photogrammetric approach.<br> Beyond a purely metric assessment, 3D textured model has employed to generate 2D representations, useful for documentation purpose and to highlight the most significant damaged areas. 3D digital models and 2D representations can effectively contribute to monitor the state of conservation of historical buildings and become a very useful support for preliminary restoration works.


Author(s):  
A. A. Pushkarev ◽  
O. V. Zaytceva ◽  
M. V. Vavulin ◽  
A. Y. Skorobogatova

A 3D recording of a 19-century wooden ship discovered on the bank of the river Ob (Western Siberia) was performed in autumn 2015. The archaeologized ship was partly under water, partly lying ashore, buried under fluvial deposits. The 3D recording was performed in October, when the water level was at its lowest after clearing the area around the ship. A 3D recording at the place of discovery was required as part of the ship museumification and reconstruction project. The works performed were primarily aimed at preserving as much information about the object as possible. &lt;br&gt;&lt;br&gt; Given the location and peculiar features of the object, a combination of close-range photogrammetry and aerial photography was considered to be the best possible solution for creating a high-quality 3D model. &lt;br&gt;&lt;br&gt; The dismantled ship was delivered to Nizhnevartovsk Museum of Local History in October 2015. The ship is going to be reassembled using the created 3D model to be exhibited in the museum. The resulting models are also going to be used to make a virtual 3D reconstruction of the ship in the future. We shot a stereoscopic video for Nizhnevartovsk Museum of Local History to let visitors see the place of discovery and explore the ship in greater details. Besides, 3D printing allowed for creating a miniature of the ship, which is also going to be included in the exposition devoted to this unique discovery.


Author(s):  
A. A. Pushkarev ◽  
O. V. Zaytceva ◽  
M. V. Vavulin ◽  
A. Y. Skorobogatova

A 3D recording of a 19-century wooden ship discovered on the bank of the river Ob (Western Siberia) was performed in autumn 2015. The archaeologized ship was partly under water, partly lying ashore, buried under fluvial deposits. The 3D recording was performed in October, when the water level was at its lowest after clearing the area around the ship. A 3D recording at the place of discovery was required as part of the ship museumification and reconstruction project. The works performed were primarily aimed at preserving as much information about the object as possible. <br><br> Given the location and peculiar features of the object, a combination of close-range photogrammetry and aerial photography was considered to be the best possible solution for creating a high-quality 3D model. <br><br> The dismantled ship was delivered to Nizhnevartovsk Museum of Local History in October 2015. The ship is going to be reassembled using the created 3D model to be exhibited in the museum. The resulting models are also going to be used to make a virtual 3D reconstruction of the ship in the future. We shot a stereoscopic video for Nizhnevartovsk Museum of Local History to let visitors see the place of discovery and explore the ship in greater details. Besides, 3D printing allowed for creating a miniature of the ship, which is also going to be included in the exposition devoted to this unique discovery.


2020 ◽  
Vol 5 (14) ◽  
pp. 203-209
Author(s):  
Nik Umar Solihin Nik Kamaruzaman ◽  
Afiqah Ahmad ◽  
Norlina Mohamed Noor

The traditional Baruk in Sarawak has gone through some architectural changes in terms of its material and function due to the urban modernization and safety concern. Therefore, the research aims to construct the Three-Dimensional (3D) model of the building using digital close-range photogrammetry. The exploratory study can be categorized into four phases consist of Site Selection; Data Acquisition; Data Processing; and 3D Modelling. The 3D model generated from the photogrammetry software presents the result of the dense point clouds. The study could give fundamental guidelines on using a mobile device in digital close-range photogrammetry techniques. Keywords: Digital construction; traditional architecture, digital close-range photogrammetry, heritage documentation. eISSN: 2398-4287© 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v5i14.2243


Author(s):  
S.P. Singh ◽  
K. Jain ◽  
V.R. Mandla

3D city model is a digital representation of the Earth's surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations <br><br> This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. <br><br> Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.


Sign in / Sign up

Export Citation Format

Share Document