scholarly journals A new approach towards image based virtual 3D city modeling by using close range photogrammetry

Author(s):  
S.P. Singh ◽  
K. Jain ◽  
V.R. Mandla

3D city model is a digital representation of the Earth's surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations <br><br> This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. <br><br> Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.

2022 ◽  
Vol 8 (1) ◽  
pp. 105-123
Author(s):  
Heba K. Khayyal ◽  
Zaki M. Zeidan ◽  
Ashraf A. A. Beshr

The 3D city model is one of the crucial topics that are still under analysis by many engineers and programmers because of the great advancements in data acquisition technologies and 3D computer graphics programming. It is one of the best visualization methods for representing reality. This paper presents different techniques for the creation and spatial analysis of 3D city modeling based on Geographical Information System (GIS) technology using free data sources. To achieve that goal, the Mansoura University campus, located in Mansoura city, Egypt, was chosen as a case study. The minimum data requirements to generate a 3D city model are the terrain, 2D spatial features such as buildings, landscape area and street networks. Moreover, building height is an important attribute in the 3D extrusion process. The main challenge during the creation process is the dearth of accurate free datasets, and the time-consuming editing. Therefore, different data sources are used in this study to evaluate their accuracy and find suitable applications which can use the generated 3D model. Meanwhile, an accurate data source obtained using the traditional survey methods is used for the validation purpose. First, the terrain was obtained from a digital elevation model (DEM) and compared with grid leveling measurements. Second, 2D data were obtained from: the manual digitization from (30 cm) high-resolution imagery, and deep learning structure algorithms to detect the 2D features automatically using an object instance segmentation model and compared the results with the total station survey observations. Different techniques are used to investigate and evaluate the accuracy of these data sources. The procedural modeling technique is applied to generate the 3D city model. TensorFlow & Keras frameworks (Python APIs) were used in this paper; moreover, global mapper, ArcGIS Pro, QGIS and CityEngine software were used. The precision metrics from the trained deep learning model were 0.78 for buildings, 0.62 for streets and 0.89 for landscape areas. Despite, the manual digitizing results are better than the results from deep learning, but the extracted features accuracy is accepted and can be used in the creation process in the cases not require a highly accurate 3D model. The flood impact scenario is simulated as an application of spatial analysis on the generated 3D city model. Doi: 10.28991/CEJ-2022-08-01-08 Full Text: PDF


Author(s):  
S.P. Singh ◽  
K. Jain ◽  
V.R. Mandla

3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. <br><br> This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. <br><br> At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city reconstruction; CityEngine is a good product. Agisoft Photoscan software creates much better 3D model with good texture quality and automatic processing. So this image based comparative study is useful for 3D city user community. Thus this study will provide a good roadmap for geomatics user community to create photo-realistic virtual 3D city model by using image based techniques.


2017 ◽  
Vol 9 (12) ◽  
pp. 1219 ◽  
Author(s):  
Alejandro Morales ◽  
Luis Sánchez-Aparicio ◽  
Diego González-Aguilera ◽  
Pablo Rodríguez-Gonzálvez ◽  
David Hernández-López ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 446-458
Author(s):  
Marwa Mohammed Bori ◽  
Zahraa Ezzulddin Hussein

As known Close range photogrammetry represents one of the most techniques to create precise 3D model. Metric camera, digital camera, and Laser scanning can be exploited for the photogrammetry with variety level of cost that may be high. In this study, the cost level is taken in to consideration to achieve balance between the cost and the obtained accuracy. This study aims to detect potential of low cost tools for creating 3D model in terms of obtained accuracy and details and comparing it with corresponding studies. Smart phone camera is the most available for everyone; this gave the motivation for use in this study. In addition, Google Earth was used to integrate the 3D model produced from all sides including the roof.  Then, two different types of the mobile camera were used in addition to the DSLR camera (Digital Single Lens Reflex) for comparison and analysis purposes. Thus, this research gave flexibility in work and low cost resulting from replacement the metric camera with the smart camera and the unmanned aerial vehicle (UAV) with Google Earth data. Mechanism of the work can be summarized in four steps. Firstly, photogrammetry planning to determine suitable baselines from object and location of targets that measured using GPS and Total station devices. Secondly, collect images using close range photogrammetry technique. Thirdly, processing step to create the 3D model and integrated with Google Earth images using the Agi Photoscan software. Finally, Comparative and evaluation stage to derive the accuracy and quality of the model obtained from this study using statistical analysis method. Regarding this Study, University of Baghdad, central library was selected as the case study. The results of this paper show that the low cost 3D model resulted from integrating  phone and Google Earth images gave suitable result with mean accuracy level reached to about less than 5 meters compared with DSLR camera result, this may be used for several applications such as  culture heritage and architecture documentation.


ACTA IMEKO ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 57
Author(s):  
Fausta Fiorillo ◽  
Corinna Rossi

This paper presents a metric analysis and interpretation of the 3D survey of the Late Roman Fort of Umm al-Dabadib (Kharga Oasis, Egypt). The aim is to verify if a modular measure was used in the construction of the Fort and whether this was congruent with Roman or Egyptian units of measurement. Horizontal and vertical sections were extracted from the 3D model of the Fort derived from a close-range photogrammetry survey method. The resulting technical drawings were used for the study and interpretation of the dimensional patterns of the Fort that revealed the correspondence<strong> </strong>of the units of measurement of the building to Egyptian Reformed Cubit. This research is part of the project LIFE (Living in a Fringe Environment), funded by the ERC CoGrant 68167.


Author(s):  
L. Jurjević ◽  
M. Gašparović

Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.


2012 ◽  
Vol 263-266 ◽  
pp. 2393-2398
Author(s):  
Wei Zeng ◽  
Si Dong Zhong ◽  
Yuan Yao ◽  
Zhen Feng Shao

Close-range photogrammetry is a technique of calculating the location, size and shape of measured object by photography whose object distance is generally not greater than 300 meters. Three-dimensional (3D) model reconstruction based on close-range photogrammetry has higher efficiency than that based on Light Detection And Ranging (LiDAR) technique since acquiring texture data simultaneously. This technology reduces the consuming time of 3D model reconstruction, while ensuring high precision. In this paper, processes and key technologies of 3D model reconstruction based on portable close-range photogrammetry are provided, and it feasibility of the technology is verified via taking Taizhou TV Tower as an example.


2018 ◽  
Vol 63 ◽  
pp. 00013
Author(s):  
Tadeusz Widerski ◽  
Karol Daliga

The article presents a comparison of obtained models of a test object. Close range photogrammetry was used to obtain 3D models. As test object was used one of the rooms located in Wisłoujście Fortress in Gdańsk, Poland. Different models were obtained by using different distribution and number of reference points. Article contains analysis of differences between coordinates of control points obtained from total station measurements and estimated from different 3D models.


Sign in / Sign up

Export Citation Format

Share Document