scholarly journals Comparison of the next-generation sequencing (NGS) technology with culture methods in the diagnosis of bacterial and fungal infections

2020 ◽  
Vol 12 (9) ◽  
pp. 4924-4929
Author(s):  
Peixin Chen ◽  
Wenwen Sun ◽  
Yayi He
2021 ◽  
Vol 7 (8) ◽  
pp. 636
Author(s):  
Chi-Ching Tsang ◽  
Jade L. L. Teng ◽  
Susanna K. P. Lau ◽  
Patrick C. Y. Woo

Next-generation sequencing (NGS) technologies have recently developed beyond the research realm and started to mature into clinical applications. Here, we review the current use of NGS for laboratory diagnosis of fungal infections. Since the first reported case in 2014, >300 cases of fungal infections diagnosed by NGS were described. Pneumocystis jirovecii is the predominant fungus reported, constituting ~25% of the fungi detected. In ~12.5% of the cases, more than one fungus was detected by NGS. For P. jirovecii infections diagnosed by NGS, all 91 patients suffered from pneumonia and only 1 was HIV-positive. This is very different from the general epidemiology of P. jirovecii infections, of which HIV infection is the most important risk factor. The epidemiology of Talaromyces marneffei infection diagnosed by NGS is also different from its general epidemiology, in that only 3/11 patients were HIV-positive. The major advantage of using NGS for laboratory diagnosis is that it can pick up all pathogens, particularly when initial microbiological investigations are unfruitful. When the cost of NGS is further reduced, expertise more widely available and other obstacles overcome, NGS would be a useful tool for laboratory diagnosis of fungal infections, particularly for difficult-to-grow fungi and cases with low fungal loads.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao-guang Cao ◽  
Chuang-wei Yu ◽  
Shu-sheng Zhou ◽  
Yu Huang ◽  
Chun-yan Wang

Background: Fungal infections of the central nervous system (CNS) are not commonly seen clinically. Clinical diagnosis of fungal infections often depend on the pathogen culture and the clinical features. This method is time-consuming and insensitive, which can lead to misdiagnosis. The authors introduce an adult patient with fungal infections diagnosed by next-generation sequencing (NGS).Case: The patient was a 60-year-old male Chinese who had both hypermyotonia of the lower extremities and fever. The auxiliary examinations such as MRI, CT, and cerebrospinal fluid (CSF) analysis showed obvious abnormalities. Because of the difficulties in diagnosis, it was hard to determine the treatment plan. The NGS detected specific sequences of Candida albicans in 3 days. The patient was then treated with liposomal amphotericin B and fluconazole. About 3 weeks later, the symptoms of the patient improved significantly and he was discharged from the hospital.Conclusion: Compared with the routine cultural method, NGS has made a huge advancement in infection diagnosis and targeting antimicrobial therapy for CNS infection.


Author(s):  
Altuğ Koç ◽  
Elçin Bora ◽  
Tayfun Cinleti ◽  
Gizem Yıldız ◽  
Meral Torun Bayram ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


Sign in / Sign up

Export Citation Format

Share Document