scholarly journals Propiedades reológicas y mecánicas de un hormigón autocompactante con adición de nano-sílice y micro-sílice

2016 ◽  
Vol 6 (1) ◽  
pp. 1-14
Author(s):  
E. Sánchez ◽  
J. Bernal ◽  
A. Moragues ◽  
N. León

Propiedades reológicas y mecánicas de un hormigón autocompactante con adición de nano-sílice y micro-síliceRESUMENEl hormigón autocompactante es el resultado de diseñar mezclas de calidad con capacidad para asegurar su correcta colocación en estructuras fuertemente armadas en las cuales el proceso del vibrado resulta muy complicado y con riesgo de alterar la posición de las armaduras. Unido a las ventajas de este hormigón y debido a la mayor demanda de hormigones de altas prestaciones, se utiliza humo de sílice y, más recientemente, nanomateriales como adiciones. Principalmente nano-sílice. El objetivo de este trabajo es obtener hormigones autocompactantes con nano-sílice, humo de sílice y mezclas binarias de ambas adiciones que satisfagan la demanda de altas resistencias mecánicas y durables, determinando que la dosificación con mejores prestaciones es la que contiene 2.5% de nano y 2.5%.de humo de sílice. Palabras clave: Autocompactante; nanosílice; humo de sílice; reología; propiedades mecánicas. Rheological and mechanical properties of self-compacting concrete with the addition of nano-silica and microsilicaABSTRACTSelf-compacting concrete is the result of designing a quality concrete with the capacity to ensure placement of reinforcement in heavily reinforced structures in which the process of vibrating is very complicated and risky by altering the position of the reinforcement. Together with the advantages of this concrete and due to the increased demand for high-performance concretes, the silica fume, and more recently, the nano-materials are used as additions, but mainly the nano-silica. The objective of this work is to obtain self compacting concrete with nano-silica, silica fume and binary mixtures of the two additions to meet the demand for high mechanical and durable resistance. The mix with better performance is that with 2.5% of nano-sílica and 2.5% silica fume. Keywords: self-compacting concrete; nanosilica; silica fume; rheology; mechanical properties. Propriedades reológicas e mecânicas de um concreto auto adensável, com a adição de nano sílica e de micro sílica (sílica ativa)RESUMOO Concreto Auto-adensável é o resultado da concepção de um concreto de qualidade com a capacidade para assegurar a colocação de reforço em estruturas fortemente armados em que o processo de vibração é muito complicado e arriscado por alterar a posição da armadura . Juntamente com as vantagens deste concreto e devido ao aumento da procura de concretos de alto desempenho , o fumo de sílica e mais recentemente , os nano-materiais são usados como adições . Principalmente a nano- sílica. O objetivo deste trabalho é a obtenção de concreto auto- adensável com nano- sílica , sílica ativa e misturas binárias das duas adições para atender a demanda de alta resistência mecânica e durável. A mistura com melhores desempenhos é aquela que contém 2,5 % de nano - sílica e 2,5% de pó de sílica . Palavras-chave: Auto-compactável; nano-sílica; sílica activa; reologia; propriedades mecánicas. 

Author(s):  
Ibrahim A. Atiyah

In a lot of industrial applications the Composite materials have an essential role. The manufacturing of the new composite materials is intended improve the materials applicability. In this work, the influence of silica Nano filler type-and compared that effect with that of silica micro fillers-on mechanical properties of polyester have been investigated. For this purpose, mechanical testing have been used. The addition of Nano  silica and micro silica was in different percentages 1%, 3%, and 5%, due to the fact that Polyester is one of matrix of polymer that is frequently used with strengthening fibers for sophisticated applications of composites because of its resistance to corrosion, cost that is low, smooth coping, and its ability to prevent the outbreak of flame.  


Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 36 ◽  
Author(s):  
Hisham Alabduljabbar ◽  
Rayed Alyousef ◽  
Fahed Alrshoudi ◽  
Abdulaziz Alaskar ◽  
Ahmed Fathi ◽  
...  

The behaviors of the fresh and mechanical properties of self-compacting concrete (SCC) are different from those of normal concrete mix. Previous research has investigated the benefits of this concrete mix by incorporating different constituent materials. The current research aims to develop a steel fiber reinforcement (SFR)‒SCC mixture and to study the effectiveness of different cement replacement materials (CRMs) on the fresh and mechanical properties of the SFR‒SCC mixtures. CRMs have been used to replace cement content, and the use of different water/cement ratios may lower the cost of CRMs, which include microwave-incinerated rice husk ash, silica fume, and fly ash. Fresh behavior, such as flow and filling ability and capacity segregation, was examined by a special test in SCC on the basis of their specifications. Moreover, compressive and splitting tensile strength tests were determined to simulate the hardened behavior for the concrete specimens. Experimental findings showed that, the V-funnel and L-box were within the accepted range for SCC. Tensile and flexural strength increases upon the use of 10% silica fume were found when compared with other groups; the ideal percentage of steel fiber that should be combined in this hybrid was 2% of the total weight of the binder. Overall, steel fibers generated a heightened compressive and splitting tensile strength in the self-compacting concrete mixes.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2017 ◽  
Vol 22 (2) ◽  
Author(s):  
Gustavo Braz de Abreu ◽  
Suéllen Mota Marques Costa ◽  
Adriana Guerra Gumieri ◽  
José Márcio Fonseca Calixto ◽  
Fabrício Carlos França ◽  
...  

2018 ◽  
Vol 162 ◽  
pp. 02014
Author(s):  
Mazin Abdulrahman ◽  
Alyaa Al-Attar ◽  
Marwa Ahmad

Reactive Powder Concrete (RPC) is an ultra-high performance concrete which has superior mechanical and physical properties, and composed of cement and very fine powders such as quartz sand and silica fume with very low water/ binder ratio and Superplasticizer. Heat treatment is a well-known method that can further improve the performance of (RPC). The current research including an experimental study of the effect of different curing conditions on mechanical properties of reactive powder concrete (compressive strength, modulus of rupture and splitting tensile strength), the curing conditions includes three type of curing; immersion in water at temperature of 35 OC (which is considered as the reference-curing situation), immersion in water at temperature of 90 OC for 5 hours daily and curing with hot steam for 5 hours daily) until 28 days according to ASTM C684-99 [8]. This research includes also the study of effect of adding silica fume as percentage of cement weight on mechanical properties of reactive powder concrete for different percentage ratios (5%,10% and 15%). Super plasticizer is also used with ratio of (1.8%) by weight of cementitious material; constant water cement ratio (0.24) was used for all mixes. For each reactive concrete mix, it has been cast into a cubes of (150*150*150) (to conduct the compression test), a cylinders of 150mm diameter with 300mm height (to conduct split test) and prisms of (500*100*100)mm to conduct the modulus of rupture test. The results showed that the best method of curing (according to its enhancing the RPC mechanical properties) is the method of immersion in hot water at temperature 90 OC for the all silica fume percentages, and the best used silica fume percentage was (10%) for the all used curing methods.


Sign in / Sign up

Export Citation Format

Share Document