scholarly journals Prediction Models for the Mechanical Properties of Self-Compacting Concrete with Recycled Rubber and Silica Fume

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.

Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


2011 ◽  
Vol 261-263 ◽  
pp. 441-445 ◽  
Author(s):  
Yousef Rahmani ◽  
Mohammad Reza Sohrabi ◽  
Ahmad Askari

The disposal of waste rubber produced each year is a critical issue for any country, because this material doesn't resolve easily and leads to more environmental pollution. Utilizing waste rubber in industry is an alternative for the disposal of this matter. In the present study 5%, 10% and 15% of coarse aggregate is replaced with crumb rubber by volume along with 5%, 10% and 15% silica fume as cement replacement by weight in self compacting concrete. There were several rheological tests carried out on fresh concrete such as slump flow test, T50, J-ring, L-box and V-funnel test. Mechanical properties of specimens were also examined; compressive strength at 7 and 28 days of curing and modulus of elasticity and density of hardened cylindrical specimens at 28 days of curing.


2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


2022 ◽  
Vol 961 (1) ◽  
pp. 012082
Author(s):  
Taghreed Abd-Almahdee Musa ◽  
Hiba Ali Abbas ◽  
Ayam Jabbar Jihad

Abstract This study includes the effect of using different dosages of integral waterproof Admixture and silica fume on some mechanical properties of concrete. Concrete improved by using different ratios of integral water proof admixture(IWP admixture) to increase strength and durability, this admixture used as percentages from cement weight in each mix ranged from 0.0% to 2% ( 0.0, 1.0%, 1.2%,1.4%,1.6%,1.8%, and 2%), compressive strength test done for cubes with (10*10*10) cm for each mix. The flexural strength test was done by (10*10*40) cm beams and tested after 28 days of curing. comparison study was made between silica fume mixes properties and mixes without silica fume. Adding IWP admixture leads to increase mechanical properties of ordinary concrete, the reference mix shows compressive strength equal to 26.38 MPa, while mixes with 2% IWP gives 38.8 MPa in this study. The study also includes the effect of using 2 main dosages of silica fume to the mixes that contain IWP, the new concrete with two admixtures show better values of compressive, tensile and flexural strength comparing with mixes with only IWP, the compressive strength increased from 38.8 MPa for ordinary IWP mixes to 52.3 MPa for 10% silica fume concrete mixes, and also the flexural strength increased from 4.8 MPa for mixes with only IWP to 7.3 MPa for mixes modified with 10 % silica fume. Study include also using waste glass as fine aggregate in mixes contain IWP and 10% silica fume and that show more increment in mechanical properties also.


2017 ◽  
Vol 9 (2) ◽  
pp. 79-92 ◽  
Author(s):  
Ahmed Tareq NOAMAN ◽  
Badorul Hisham ABU BAKAR ◽  
Hazizan MD. AKIL

Researchers investigated the utilization of crumb rubber aggregate recycled from waste tire in concrete to solve the problem of discarded tire and to produce a green sustainable concrete. However, a reduction in the mechanical properties due to crumb rubber inclusion occurs. Steel fiber rubberized concrete used in this study to provide a balance between the strength loss and sustainable issue. An investigation on the mechanical properties of rubberized concrete combined with hooked – end steel fiber is presented. Rubberized concrete with different replacement ratios of crumb rubber was incorporated in plain and steel fiber concrete mixes via partial replacement of fine aggregate. Four replacement ratios (17.5%, 20%, 22.5%, and 25%) were used to investigate the effect of the partial replacement of fine aggregate by crumb rubber on the mechanical properties of plain and steel fiber concrete. In both mixes, reduction in mechanical properties was observed to be proportionate with the increment of crumb rubber. Finally, a successful combination of steel fiber and crumb rubber was obtained due to improvement of strain capacity under flexural loading.


2021 ◽  
Vol 13 (10) ◽  
pp. 5571
Author(s):  
Wesam Salah Alaloul ◽  
Muhammad Ali Musarat ◽  
Sani Haruna ◽  
Kevin Law ◽  
Bassam A. Tayeh ◽  
...  

The existing form of self-compacting concrete (SCC) comprises of a large amount of powdered and fine materials. In this study, a part of the cementitious material was replaced with constant high-volume fly ash, and a portion of fine aggregates was substituted by crumb rubber (CR). Besides that, silica fume (SF) was added, with the hope that by implementing a new type of nanomaterial, the loss in mechanical strength due to previous modifications such as rubberization and replacement will be prevented. Two variables were found to influence the constituent/component in the mix design: SF and CR. The proportion of SF varies from 0% to 10%, while that of CR from 0% to 30% by volume of the total river sand, where 55% of cement was replaced by the fly ash. A total of 13 rubberized SCC samples with CR and SF as controlling variables were made, and their design mix was produced by a Design of Experiment (DOE) under the Response Surface Methodology (RSM). The results reveal a slight increase in the mechanical properties with the addition of SF. The theoretical mathematical models and equation for each different mechanical strength were also developed after incorporating the experimental results into the software.


2018 ◽  
Vol 4 (7) ◽  
pp. 1542 ◽  
Author(s):  
Valiollah Azizifar ◽  
Milad Babajanzadeh

This paper investigates the capability of utilizing Multivariate Adaptive Regression Splines (MARS) and Gene Expression Programing (GEP) methods to estimate the compressive strength of self-compacting concrete (SCC) incorporating Silica Fume (SF) as a supplementary cementitious materials. In this regards, a large experimental test database was assembled from several published literature, and it was applied to train and test the two models proposed in this paper using the mentioned artificial intelligence techniques. The data used in the proposed models are arranged in a format of seven input parameters including water, cement, fine aggregate, specimen age, coarse aggregate, silica fume, super-plasticizer and one output. To indicate the usefulness of the proposed techniques statistical criteria are checked out. The results testing datasets are compared to experimental results and their comparisons demonstrate that the MARS (R2=0.98 and RMSE= 3.659) and GEP (R2=0.83 and RMSE= 10.362) approaches have a strong potential to predict compressive strength of SCC incorporating silica fume with great precision. Performed sensitivity analysis to assign effective parameters on compressive strength indicates that age of specimen is the most effective variable in the mixture.


Self Compacting Concrete (SCC) is able to compact under its own mass in thin sections and in congested reinforced zones due to its high fluidity and cohesiveness. In order to produce an eco-friendly self compacting concrete with characteristic compressive strength of 40MPa, a fine industrial by-product silica fume is used as a partial substitutefor cement by weight (5%, 7.5% and 10%) and in addition to that quarry dust is partially replaced for natural fine aggregate from 5 to 15% with an increment of 5%. To study the effect of silica fume and quarry dust in fresh and hardened properties of medium strength self compacting concrete, 10 different SCC mixes were designed using Japanese method. From the experimental studyit was observed that the SCC mix containing 7.5% silica fume and 5% quarry dust exhibits the equivalent properties as that of SCC mix made with conventional materials and found to be optimum. Also, analytical expressions are proposed to predict the indirect tensile strength and flexural strength of SCC in terms of compressive strength and the results are compared with the existing codal provisions.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


Sign in / Sign up

Export Citation Format

Share Document