scholarly journals Preparation of Ultra-Fine Grained Alloys Based on Fe-Al-Si And Ti-Al-Si Intermetallic Compounds by Powder Metallurgy Using the Mechanical Alloying

2015 ◽  
Vol 15 (2) ◽  
pp. 238-242 ◽  
Author(s):  
Jiří Vystrčil ◽  
Pavel Novák ◽  
Alena Michalcová
2018 ◽  
Vol 941 ◽  
pp. 1276-1281
Author(s):  
Anna Terynková ◽  
Jiří Kozlík ◽  
Kristína Bartha ◽  
Tomáš Chráska ◽  
Josef Stráský

Ti-15Mo alloy belongs to metastable β-Ti alloys that are currently used in aircraft manufacturing and Ti15Mo alloy is a perspective candidate for the use in medicine thanks to its biotolerant composition. In this study, Ti15Mo alloy was prepared by advanced techniques of powder metallurgy. The powder of gas atomized Ti-15Mo alloy was subjected to cryogenic milling to achieve ultra-fine grained microstructure within the powder particles. Powder was subsequently compacted using spark plasma sintering (SPS). The effect of cryogenic milling on the microstructure and phase composition of final bulk material after SPS was studied by scanning electron microscopy. Sintering at 750°C was not sufficient for achieving full density in gas atomized powder, while milled material could be successfully sintered at this temperature. Alpha phase particles precipitated during sintering and their size, as well as the size of beta matrix grains, was strongly affected by the sintering temperature.


2015 ◽  
Vol 719-720 ◽  
pp. 87-90
Author(s):  
Muneer Baig ◽  
Hany Rizk Ammar ◽  
Asiful Hossain Seikh ◽  
Mohammad Asif Alam ◽  
Jabair Ali Mohammed

In this investigation, bulk ultra-fine grained and nanocrystalline Al-2 wt.% Fe alloy was produced by mechanical alloying (MA). The powder was mechanically milled in an attritor for 3 hours and yielded an average crystal size of ~63 nm. The consolidation and sintering was performed using a high frequency induction sintering (HFIS) machine at a constant pressure of 50 MPa. The prepared bulk samples were subjected to uniaxial compressive loading over wide range of strain rates for large deformation. To evaluate the effect of sintering conditions and testing temperature on the strain rate sensitivity, strain rate jump experiments were performed at high temperature. The strain rate sensitivity of the processed alloy increased with an increase in temperature. The density of the bulk samples were found to be between 95 to 97%. The average Vickers micro hardness was found to be 132 Hv0.1.


2011 ◽  
Vol 239-242 ◽  
pp. 2756-2759
Author(s):  
Yong Qiang Qin ◽  
Yu Cheng Wu ◽  
Yan Wang ◽  
Yu Hong ◽  
Jing Quan Deng ◽  
...  

Copper and copper alloys had various applications in tremendous areas due to their unique properties, such as good conductivity, good thermal conductivity and so on. However, applications of copper and copper alloys were severely restricted as the result of the limited strength at room temperature and poor wear-resistance at high temperature. In this paper, we investigated the preparation of Cu-Cr-Zr/AlN nanocomposites by mechanical alloying process and then powder metallurgy technology. XRD and SEM were performed for the phase and morphology characterization. The conductivity properties were also tested and the results showed that Cu-Cr-Zr/AlN nanocomposites exhibited excellent conductivity behavior.


Author(s):  
Marcello Cabibbo ◽  
Filip Průša ◽  
Alexandra Šenková ◽  
Andrea Školáková ◽  
Vojtěch Kučera ◽  
...  

High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.


2020 ◽  
Vol 131 ◽  
pp. 105355 ◽  
Author(s):  
Matthew K. Dunstan ◽  
James D. Paramore ◽  
Z. Zak Fang ◽  
Jonathan P. Ligda ◽  
Brady G. Butler

1997 ◽  
Vol 36 (11) ◽  
pp. 1227-1232 ◽  
Author(s):  
S.H. Liao ◽  
P.W. Kao ◽  
C.P. Chang

2018 ◽  
Vol 880 ◽  
pp. 241-247
Author(s):  
Claudiu Nicolicescu ◽  
Victor Horia Nicoară ◽  
Costel Silviu Bălulescu

Alloys based on Cu/Cr and Cu/Cr/W attract the attention due to their presence in different applications that require higher electrical properties which are combined with good mechanical properties. In order to synthesis the material based on Cu/Cr and Cu/Cr/W, mechanical alloying technique was used. Four mixtures, X1 (99%CuCr), X2 (97%CuCr), X3 (94%Cu1%CrW), X4 (92%Cu3%CrW – weight percent), were prepared using a vario planetary ball mill Pulverisette 4 made by Fritsch. The mixtures obtained after 10 hours were analyzed by scanning electron microscopy (SEM). It was found that the presence of chromium and tungsten influence the morphology and the particles tend to be flat. Sinter ability and microhardness are influenced by the chemical composition of the samples.


2008 ◽  
Vol 569 ◽  
pp. 125-128
Author(s):  
Peng Xiao ◽  
Zhi Kang Fan

The Cu20W70Cr10 composites were fabricated by two methods which are the conventional powder metallurgy, and mechanical alloying to prepare WCr compound powders, followed by sintering and infiltration. The erosion behavior of CuWCr composites under breakdown was investigated. The surfaces of the composites before and after erosion and the mechanism of arc erosion were studied by scanning electron microscopy. The results show that the CuWCr composites prepared by mechanical alloying have superfine microstructure, uniform composition and high density, thus result in good characteristics of diffusing arcs and arc eroding endurance. Arc erosion zones are dispersive and uniform on the surfaces with some flat eroding pits. The Cu20W70Cr10 composites have excellent electrical properties such as high breakdown voltage, low chopping current and long arc life.


Sign in / Sign up

Export Citation Format

Share Document