scholarly journals A framework for modeling and assessing system resilience using a Bayesian network : a case study of an interdependent electrical infrastructure systems

2021 ◽  
Author(s):  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Seyedmohsen Hosseini ◽  
Mohammad Marufuzzaman ◽  
Randy Buchanan

This research utilizes Bayesian network to address a range of possible risks to the electrical power system and its interdependent networks (EIN) and offers possible options to mitigate the consequences of a disruption. The interdependent electrical infrastructure system in Washington, D.C. is used as a case study to quantify the resilience using the Bayesian network. Quantification of resilience is further analyzed based on different types of analysis such as forward propagation, backward propagation, sensitivity analysis, and information theory. The general insight drawn from these analyses indicate that reliability, backup power source, and resource restoration are the prime factors contributed towards enhancing the resilience of an interdependent electrical infrastructure system.

Author(s):  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Seyedmohsen Hosseini ◽  
Mohammad Marufuzzaman ◽  
Randy K. Buchanan

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4667 ◽  
Author(s):  
Adriana Mar ◽  
Pedro Pereira ◽  
João F. Martins

One of the most critical infrastructures in the world is electrical power grids (EPGs). New threats affecting EPGs, and their different consequences, are analyzed in this survey along with different approaches that can be taken to prevent or minimize those consequences, thus improving EPG resilience. The necessity for electrical power systems to become resilient to such events is becoming compelling; indeed, it is important to understand the origins and consequences of faults. This survey provides an analysis of different types of faults and their respective causes, showing which ones are more reported in the literature. As a result of the analysis performed, it was possible to identify four clusters concerning mitigation approaches, as well as to correlate them with the four different states of the electrical power system resilience curve.


Author(s):  
Ricardo Menezes Salgado ◽  
Takaaki Ohishi ◽  
Rosangela Ballini

The main objective of this chapter is to present a hybrid model for bus load forecasting. This approach represents an essential tool for the operation of the electrical power system and the hybrid model combines a bus clustering process and a load forecasting model. As a case study, the model was applied to the real Brazilian electrical system, and the results revealed a performance similar to that of conventional models for bus load forecasting, but about 14 times faster. The results are compatible with the safe operating load levels for the Brazilian electrical power system and have proved to be adequate for use in real operation tasks.


2009 ◽  
Vol 14 (1) ◽  
pp. 9-16
Author(s):  
Fábio Vincenzi Romualdo da Silva ◽  
João Batista Vieira Júnior ◽  
Ernane Antônio Alves Coelho ◽  
Valdeir José Farias ◽  
Luiz Carlos de Freitas

2020 ◽  
Vol 7 (08) ◽  
pp. 268-273
Author(s):  
Raheemullah Khan ◽  
◽  
Jehan Parvez ◽  
Abdur Rehman ◽  
Muhammad Ibrahim ◽  
...  

Author(s):  
Ole J. Mengshoel ◽  
Mark Chavira ◽  
Keith Cascio ◽  
Scott Poll ◽  
Adnan Darwiche ◽  
...  

Author(s):  
Hoda Mehrpouyan ◽  
Brandon Haley ◽  
Andy Dong ◽  
Irem Y. Tumer ◽  
Christopher Hoyle

AbstractResilience is a key driver in the design of systems that must operate in an uncertain operating environment, and it is a key metric to assess the capacity for systems to perform within the specified performance envelop despite disturbances to their operating environment. This paper describes a graph spectral approach to calculate the resilience of complex engineered systems. The resilience of the design architecture of complex engineered systems is deduced from graph spectra. This is calculated from adjacency matrix representations of the physical connections between components in complex engineered systems. Furthermore, we propose a new method to identify the most vulnerable components in the design and design architectures that are robust to transmission of failures. Nonlinear dynamical system and epidemic spreading models are used to compare the failure propagation mean time transformation. Using these metrics, we present a case study based on the Advanced Diagnostics and Prognostics Testbed, which is an electrical power system developed at NASA Ames as a subsystem for the ramp system of an infantry fighting vehicle.


Sign in / Sign up

Export Citation Format

Share Document