scholarly journals Rapid tidal reconstruction with UTide and the ADCIRC tidal database

2021 ◽  
Author(s):  
Marissa Torres ◽  
Norberto Nadal-Caraballo

The quantification of storm surge is vital for flood hazard assessment in communities affected by coastal storms. The astronomical tide is an integral component of the total still water level needed for accurate storm surge estimates. Coastal hazard analysis methods, such as the Coastal Hazards System and the StormSim Coastal Hazards Rapid Prediction System, require thousands of hydrodynamic and wave simulations that are computationally expensive. In some regions, the inclusion of astronomical tides is neglected in the hydrodynamics and tides are instead incorporated within the probabilistic framework. There is a need for a rapid, reliable, and accurate tide prediction methodology to provide spatially dense reconstructed or predicted tidal time series for historical, synthetic, and forecasted hurricane scenarios. A methodology is proposed to combine the tidal harmonic information from the spatially dense Advanced Circulation hydrodynamic model tidal database with a rapid tidal reconstruction and prediction program. In this study, the Unified Tidal Analysis program was paired with results from the tidal database. This methodology will produce reconstructed (i.e., historical) and predicted tidal heights for coastal locations along the United States eastern seaboard and beyond and will contribute to the determination of accurate still water levels in coastal hazard analysis methods.

Author(s):  
Junichi Ninomiya ◽  
Yuya Taka ◽  
Nobuhito Mori

IPCC AR5 reported that the extreme events like tropical cyclone, heavy rainfall and so on will be strengthen. The winter cyclone is one of the cause of coastal hazard. The winter cyclone is defined as the extratropical depression with rapid development. It causes high wave and storm surge from winter to spring, and Japan sometimes have casualties and economical loss. Some researches reported that the number of winter cyclone tend to increase. Because its tendency seems to go on, future change estimation of winter cyclone activity is important for disaster reduction. Understanding of winter cyclone is developing. For example, Yoshida and Asuma showed that the winter cyclones are classified by their track and the development of winter cyclone is related to lateral heat flux. On the other hand, almost of all researches of impact assessment on coastal hazard focus on the tropical cyclone. Mori et al. showed the maximum potential storm surge in Japan using maximum potential intensity of tropical cyclone and GCM outputs, and large storm surge will increase. Shimura et al. showed that extreme wave caused by the tropical cyclone will develop at offshore region of east from Japan. This research aims to reveal stochastic future change of winter cyclone using the database for policy decision making for future climate change (after here, d4PDF) which is huge ensemble dataset of present- and futureclimate. Then, the risk of coastal hazard will be evaluate.


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 1211 ◽  
Author(s):  
Norberto C. Nadal-Caraballo ◽  
Madison O. Campbell ◽  
Victor M. Gonzalez ◽  
Marissa J. Torres ◽  
Jeffrey A. Melby ◽  
...  

2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


2020 ◽  
Vol 104 (3) ◽  
pp. 2027-2049
Author(s):  
A. Curran ◽  
Karin De Bruijn ◽  
Alessio Domeneghetti ◽  
Federica Bianchi ◽  
M. Kok ◽  
...  

Abstract Reliable hazard analysis is crucial in the flood risk management of river basins. For the floodplains of large, developed rivers, flood hazard analysis often needs to account for the complex hydrology of multiple tributaries and the potential failure of dikes. Estimating this hazard using deterministic methods ignores two major aspects of large-scale risk analysis: the spatial–temporal variability of extreme events caused by tributaries, and the uncertainty of dike breach development. Innovative stochastic methods are here developed to account for these uncertainties and are applied to the Po River in Italy. The effects of using these stochastic methods are compared against deterministic equivalents, and the methods are combined to demonstrate applications for an overall stochastic hazard analysis. The results show these uncertainties can impact extreme event water levels by more than 2 m at certain channel locations, and also affect inundation and breaching patterns. The combined hazard analysis allows for probability distributions of flood hazard and dike failure to be developed, which can be used to assess future flood risk management measures.


Author(s):  
Wen-Cheng Liu ◽  
Wei-Bo Chen ◽  
Lee-Yaw Lin

A typhoon-induced storm surge is considered one of the most severe coastal disasters in Taiwan. However, the combination of the storm surge and the astronomical tide called the storm tide can actually cause extreme flooding in coastal areas. This study implemented a two-dimensional hydrodynamic model to account for the interaction between tides and storm surges on the coast of Taiwan. The model was validated with observed water levels at Sauo Fish Port, Hualien Port, and Chenggong Fish Port under different historical typhoon events. The model results are in reasonable agreement with the measured data. The validated model was then used to evaluate the effects of the typhoon's intensity, bathymetric change, and the combination of the typhoon’s intensity and bathymetric change on the maximum storm tide and its distribution along the east coast of Taiwan. The results indicated that the maximum storm tide rises to 1.92 m under a typhoon with an intensity of a 100-year return period. The maximum storm tide increased from a baseline of 1.26 m to 2.63 m for a 90% bathymetric rise at Sauo Fish Port under the conditions of Typhoon Jangmi (2008). The combination of the intensity of a typhoon with a 100-year return period and a 90% bathymetric rise will result in a maximum storm tide exceeding 4 m, 2 m, and 3 m at Sauo Fish Port, Hualien Port, and Chenggong Fish Port, respectively. We also found that the distribution of the maximum storm tide on the east coast of Taiwan can expand significantly subject to the bathymetric rise.


2018 ◽  
Vol 18 (9) ◽  
pp. 2603-2623 ◽  
Author(s):  
Thomas R. Mortlock ◽  
Daryl Metters ◽  
Joshua Soderholm ◽  
John Maher ◽  
Serena B. Lee ◽  
...  

Abstract. Severe tropical cyclone (TC) Debbie made landfall on the northern Queensland coast of Australia on 27 March 2017 after crossing the Great Barrier Reef as a slow-moving Category 4 system. Groups from industry, government and academia collected coastal hazard and impact data before, during and after the event and shared these data to produce a holistic picture of TC Debbie at the coast. Results showed the still water level exceeded the highest astronomical tide by almost a metre. Waves added a further 16 % to water levels along the open coast, and were probably unprecedented for this area since monitoring began. In most places, coastal barriers were not breached and as a result there was net offshore sand transport. If landfall had occurred 2 h earlier with the high tide, widespread inundation and overwash would have ensued. This paper provides a case study of effective cross-sector data sharing in a natural hazard context. It advocates for a shared information platform for coastal extremes in Australia to help improve the understanding and prediction of TC-related coastal hazards in the future.


Author(s):  
E. V. Slepneva ◽  
◽  
E. A. Parygina ◽  
N. V. Kichigina ◽  
◽  
...  

The main reasons for the occurrence of floods of different genesis in the river basins of Angara, Nizhnyaya Tunguska, Lena and Lake Baikal within the Irkutsk region are studied. Based on the analysis of the collected materials, the work considered the natural prerequisites for the occurrence of floods in the Irkutsk region, the main ones are: 1) floods resulting from an increase in river runoff during spring or spring-summer snow melting floods and summer rainfall floods; 2) floods caused by the collision of a water flow with an obstacle in the river bed during ice damming and jamming. The most important parameters in flood hazard analysis are maximum runoff and water levels. The maximum runoff of spring snow melting floods and summer rainfall floods at hydrological posts was analyzed, and an inventory of river sections with ice-dam and ice-jam was carried out. The result of the work was the zoning of the territory of the Irkutsk region according to the genesis of floods. The method of conjugate analysis was used, based on identifying the relationships between individual components of nature (geomorphological structure, climatic conditions and water regime of rivers). The use of the method of conjugate analysis made it possible to identify nine areas (Biryusinsko-Udinskij, Vostochno-Sayanskij, Verkhneangarskij, Sredneangarskij, Leno-Angarskij, Verkhnelenskij, Pribaikalskij, Tunguskij and Vitimo-Patomskij), differing in the water regime of rivers and natural conditions for the river runoff formation. The performed zoning of the Irkutsk region territory has both practical and theoretical significance. The results of this study can be used in educational institutions, in the Ministry of Emergency Situations, as well as in scientific activities, to obtain modern data on the causes and nature of the spread of floods within the Irkutsk region.


2018 ◽  
Author(s):  
Thomas R. Mortlock ◽  
Daryl Metters ◽  
Joshua Soderholm ◽  
John Maher ◽  
Serena B. Lee ◽  
...  

Abstract. Severe Tropical Cyclone (TC) Debbie made landfall on the north Queensland coast of Australia on 27 March 2017 after crossing the Great Barrier Reef as a slow-moving Category 4 system. Groups from industry, government and academia collected coastal hazard and impact data before, during and after the event and shared this data to produce a holistic picture of TC Debbie at the coast. Results showed the still water level exceeded the highest astronomical tide by almost a metre. Waves added a further 16 percent to water levels along the open coast, and were probably unprecedented for this area since monitoring began. In most places, coastal barriers were not breached and as a result there was net offshore sand transport. If landfall had occurred two hours earlier with the high tide, widespread inundation and overwash would have ensued. This paper provides a case study of effective cross-sector data sharing in a natural hazard context. It advocates for a shared information platform for coastal extremes in Australia to help improve the understanding and prediction of TC-related coastal hazards in the future.


2016 ◽  
Vol 16 (4) ◽  
pp. 941-961 ◽  
Author(s):  
Heiko Apel ◽  
Oriol Martínez Trepat ◽  
Nguyen Nghia Hung ◽  
Do Thi Chinh ◽  
Bruno Merz ◽  
...  

Abstract. Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial–pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial–pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.


Sign in / Sign up

Export Citation Format

Share Document