scholarly journals Infrasound propagation in the Arctic

2021 ◽  
Author(s):  
D. Wilson ◽  
Vladimir Ostashev ◽  
Michael Shaw ◽  
Michael Muhlestein ◽  
John Weatherly ◽  
...  

This report summarizes results of the basic research project “Infrasound Propagation in the Arctic.” The scientific objective of this project was to provide a baseline understanding of the characteristic horizontal propagation distances, frequency dependencies, and conditions leading to enhanced propagation of infrasound in the Arctic region. The approach emphasized theory and numerical modeling as an initial step toward improving understanding of the basic phenomenology, and thus lay the foundation for productive experiments in the future. The modeling approach combined mesoscale numerical weather forecasts from the Polar Weather Research and Forecasting model with advanced acoustic propagation calculations. The project produced significant advances with regard to parabolic equation modeling of sound propagation in a windy atmosphere. For the polar low, interesting interactions with the stratosphere were found, which could possibly be used to provide early warning of strong stratospheric warming events (i.e., the polar vortex). The katabatic wind resulted in a very strong low-level duct, which, when combined with a highly reflective icy ground surface, leads to efficient long-distance propagation. This information is useful in devising strategies for positioning sensors to monitor environmental phenomena and human activities.

2021 ◽  
Vol 11 (17) ◽  
pp. 7815
Author(s):  
Shande Li ◽  
Shuai Yuan ◽  
Shaowei Liu ◽  
Jian Wen ◽  
Qibai Huang ◽  
...  

Mastering the sound propagation law of low-frequency signals in the Arctic is a major frontier basic research demand to improve the level of detection, communication, and navigation technology. It is of practical significance for long-distance sound propagation and underwater target detection in the Arctic Ocean. Therefore, how to establish an effective model to study the characteristics of the acoustic field in the Arctic area has always been a hot topic in polar acoustic research. Aimed at solving this problem, a mathematical polar acoustic field model with an elastic seafloor is developed based on a range-dependent elastic parabolic equation theory. Moreover, this method is applied to study the characteristics of polar sound propagation for the first attempt. The validity and effectiveness of the method and model are verified by the elastic normal mode method. Simultaneously, the propagation characteristics of low-frequency signals are studied in a polar sound field from three aspects, which are seafloor parameters, sea depth, and ice thickness. The results show that the elastic parabolic equation method can be well utilized to the Arctic low-frequency acoustic field. The analysis of the influence factors of the polar sound field reveals the laws of sound transmission loss of low-frequency signals, which is of great significance to provide information prediction for underwater submarine target detection and target recognition.


2020 ◽  
Vol 33 (5) ◽  
pp. 1935-1951 ◽  
Author(s):  
Hai Lin

AbstractPentad (5-day averaged) forecast skill over the Arctic region in boreal winter is evaluated for the subseasonal to seasonal prediction (S2S) systems from three operational centers: the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction (NCEP), and Environment and Climate Change Canada (ECCC). The results indicate that for a lead time longer than about 10 days the forecast skill of 2-m air temperature and 500-hPa geopotential height in the Arctic area is low compared to the tropical and midlatitude regions. The three S2S systems have comparable forecast skill in the northern polar region. Relatively high skill is observed in the Arctic sector north of the Bering Strait in pentads 4–6. Possible sources of S2S predictability in the polar region are explored. The polar forecast skill is found to be dependent on the phase of the Arctic Oscillation (AO) in the initial condition; that is, forecasts initialized with the negative AO are more skillful than those starting from the positive AO. This is likely due to the influence of the stratospheric polar vortex. The tropical MJO is found to also influence the prediction skill in the polar region. Forecasts starting from MJO phases 6–7, which correspond to suppressed convection in the equatorial eastern Indian Ocean and enhanced convection in the tropical western Pacific, tend to be more skillful than those initialized from other MJO phases. To improve the polar prediction on the subseasonal time scale, it is important to have a well-represented stratosphere and tropical MJO and their associated teleconnections in the model.


Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


2018 ◽  
Vol 35 (4) ◽  
pp. 110-113
Author(s):  
V. A. Tupchienko ◽  
H. G. Imanova

The article deals with the problem of the development of the domestic nuclear icebreaker fleet in the context of the implementation of nuclear logistics in the Arctic. The paper analyzes the key achievements of the Russian nuclear industry, highlights the key areas of development of the nuclear sector in the Far North, and identifies aspects of the development of mechanisms to ensure access to energy on the basis of floating nuclear power units. It is found that Russia is currently a leader in the implementation of the nuclear aspect of foreign policy and in providing energy to the Arctic region.


2020 ◽  
Vol 33 (5) ◽  
pp. 480-489
Author(s):  
L. P. Golobokova ◽  
T. V. Khodzher ◽  
O. N. Izosimova ◽  
P. N. Zenkova ◽  
A. O. Pochyufarov ◽  
...  

2011 ◽  
Author(s):  
Chimerebere Onyekwere Nkwocha ◽  
Evgeny Glebov ◽  
Alexey Zhludov ◽  
Sergey Galantsev ◽  
David Kay

2021 ◽  
Vol 18 (3) ◽  
pp. 501-533
Author(s):  
Kui Wan ◽  
Xuelian Gou ◽  
Zhiguang Guo

AbstractWith the explosive growth of the world’s population and the rapid increase in industrial water consumption, the world’s water supply has fallen into crisis. The shortage of fresh water resources has become a global problem, especially in arid regions. In nature, many organisms can collect water from foggy water under harsh conditions, which provides us with inspiration for the development of new functional fog harvesting materials. A large number of bionic special wettable synthetic surfaces are synthesized for water mist collection. In this review, we introduce some water collection phenomena in nature, outline the basic theories of biological water harvesting, and summarize six mechanisms of biological water collection: increased surface wettability, increased water transmission area, long-distance water delivery, water accumulation and storage, condensation promotion, and gravity-driven. Then, the water collection mechanisms of three typical organisms and their synthesis are discussed. And their function, water collection efficiency, new developments in their biomimetic materials are narrated, which are cactus, spider and desert beetles. The study of multiple bionics was inspired by the discovery of Nepenthes’ moist and smooth peristome. The excellent characteristics of a variety of biological water collection structures, combined with each other, are far superior to other single synthetic surfaces. Furthermore, the main problems in the preparation and application of biomimetic fog harvesting materials and the future development trend of materials fog harvesting are prospected.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Sign in / Sign up

Export Citation Format

Share Document