iron mold
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 302 ◽  
pp. 101-106
Author(s):  
Siriphorn Rabma ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aim of this research was to study the properties of cement reinforced with coconut fiber. The coconut fiber addition that uses in this research were 5, 10 and 15% by weight of cement. The cement paste and coconut fiber were mixed together and packed into an iron mold. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the water bath at 3, 7 and 28 days. After that, the physical properties i.e. water absorption and density were examined. The microstructure was characterized by scanning electron microscopy (SEM). The results showed the surfaces of the coconut fibers were not smooth, spread with nodes and irregular stripes, which is covered with substances and other impurities. The compressive strength and flexural strength were also investigated. From the results, the mechanical properties were decreased with increasing coconut fiber content due to reducing density and higher porosity and water absorption compared to non-fiber cement paste and physical properties of fiber had been flexibility and smoother caused poor binding with cement. The best compressive strength and flexural strength results were obtained with the percentages of coconut fiber as 5% which value as 26.67 N/mm2 and 5.08 N/mm2 respectively.


2020 ◽  
Vol 190 ◽  
pp. 00030
Author(s):  
Qurrotin Ayunina Maulida Okta Arifianti ◽  
Azmi Alvian Gabriel ◽  
Syarif Hidayatulloh ◽  
Kuntum Khoiro Ummatin

The current research aimed to increase the calorific value of woody cutting waste briquette with paper waste pulp as binder. There were three different binder variation used in this study, they are 5 %, 10 %, and 15 %. To create a briquette, a cylindrical iron mold with diameter of 3.5 cm and height of 3 cm and a hydraulic press with 2 t power were applied. The physical characteristics of the combination woody waste briquette and paper waste pulp, such as moisture content, ash content, volatile matter and carbon fix were examined using proximate analysis. The calorific value of briquetted fuel was tested by bomb calorimeter. The combustion test was performed to determine the combustion characteristic of briquettes, for example initial ignition time, temperature distribution, and combustion process duration. The general result shows that the calorific value of briquette stood in the range of 4 876 kCal kg–1 to 4 993 kCal kg–1. The maximum moisture content of briquette was 5.32 %. The longest burning time was 105 min.


2020 ◽  
Vol 319 ◽  
pp. 02001
Author(s):  
Qiang Li ◽  
Ke Zhu ◽  
Bei Huang ◽  
Xide Li ◽  
Xuehai Qian ◽  
...  

Cord steel has very strict requirements on the content of impurities. Hydrogen is a harmful gas element in steel and is the cause of hydrogen embrittlement. In this work, the Carrier gas hot extraction method is used to measure the hydrogen content of 77A steel. It was found that the measured value of hydrogen content was related to cooling capability of the mold. It is found that with the increasing of cooling speed of the mold, the hydrogen content increases. The measured hydrogen content can roughly reflect the hydrogen content in the liquid alloy by using the cast iron mold with faster cooling speed.


Author(s):  
K. V. Nikitin ◽  
I. Yu. Timoshkin ◽  
V. I. Nikitin

A comparative study on the effect of methods for obtaining AlTi4 modifying master alloys on the sizes of Al3Ti intermetallics is made. It is found that increasing cooling rates at solidification from 10–15 °C/s (crystallization in a hot cast iron mold, a plate 30 mm in thickness) to 60–65 °C/s (crystallization in a cold cast iron chill mold, a rod 20 mm in diameter, 170 mm in length) reduces the length and thickness of needle-shaped intermetallics almost twice (397×23 to 215×13 μm). At the same time, lower electrical conductivity and higher alloy density in a solid state are observed. Melt modification with 0,5 wt.% magnesium addition causes the formation of homogeneous 98×3 μm fine-needle intermetallics. The addition of magnesium slightly reduces electrical conductivity and density compared with the AlTi4 master alloy crystallized at the same cooling rate (60–65 °C/s). Modification of A97 grade aluminum and AK9ch alloy (Al–Si–Mg system) with the specified master alloys at the same amount of titanium added (0,01 wt.%) exerts hereditary influence on the density and electrical conductivity, and macrograin (A97) and dendrites of aluminium (AK9ch). The maximum modifying effect is provided by the AlTi4 master alloy containing 0,5 wt.% magnesium. When introduced into the alloy, it contributes to the formation of 10 μm aluminum dendrites 1427 pcs/mm2 in total in the alloy structure. When the AK9ch alloy is modified with the master alloy crystallized at cooling rates of 10–15 °C/s, 28 μm dendrites 672 pcs/mm2 in total are formed in the alloy structure. It is suggested to use density and electrical conductivity determination methods for express evaluation of master alloy modifying effectiveness.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2015 ◽  
Vol 766-767 ◽  
pp. 405-409 ◽  
Author(s):  
S. Sanman ◽  
K.V. Sreenivas Rao ◽  
K.C. Anil

Experiments were conducted to study the effect of mold material on boundary heat flux variation during gravity die-casting. Inverse method was used for determining heat flux on the inside and outside surface of the mold during casting of pure Aluminum and Al-B4C composites. Different chill materials were used as mold material on one side of the rectangular mold cavity. K- type thermocouples were used for measurement of mold temperature during casting solidification. The mold temperatures at various locations were recorded using a data logger. These measured temperatures were used as input by the inverse algorithm for the assessment of the surface heat flux as a function of time. It was observed that the temperature difference between the inner and outer surface of the copper is very less in comparison to the cast iron mold and stainless steel mold. The cooling curve of the insulation mold indicates that there is no heat transfer through the insulation mold. The boundary heat flux is much higher in the case of copper mold than in the cases of cast iron mold and stainless steel mold.


2015 ◽  
Vol 729 ◽  
pp. 119-124
Author(s):  
Mikhail Alekhsandrovich Ivanov

The article considers the problem of cracks formation in cast-iron molds during the casting of zinc blocks. The analysis of casting technology for manufacturing of cast-iron molds is performed. Changes of the construction of cast-iron molds is implemented to ensure the directional solidification. The analysis of thermal cycles of cast-iron molds during its operation is performed. It is established that the most dangerous moment of crack formation is the beginning of the pouring of molten zinc in the cold cast-iron mold. The new composition of the separation insulating coating, which reduces thermal shock and the probability of crack formation is developed.


2013 ◽  
Vol 341-342 ◽  
pp. 18-22 ◽  
Author(s):  
Rui Qing Liu ◽  
An Yun Li ◽  
Li Jun Peng ◽  
Guang Bin Qiu

Cu-20Ni-5Sn alloy has not only high content of Ni melted point 1453°C, but also low melting point elements of Sn melted at 231.9°C, therefore, the grain structure of alloy as-cast is in perfect dendrite that lends to form segregation and inverse segregation of Sn, so that the hot rolling (cogging) processing is restricted. The influence of casting methods, cooling rate and heat treatment on the microstructures and properties of as-cast Cu-20Ni-5Sn alloy were investigated. The results show that, compared to the ingot casted in iron mold and graphite mold, the microstructure of Cu-20Ni-5Sn ingot prepared by horizontal continuous casting is the finest and the Sn segregation level is in lowest. The microstructure of the ingot casted in graphite mold is in the most perfected dendritic and with the highest segregation of Sn, the microstructure of ingot in iron molding is in the middle. The ingots must be homogenized before cold-processing. Homogenization treatment can eliminate Sn segregation and dissolve the non-equilibrium phase of ingots.


2005 ◽  
Vol 44 (2) ◽  
pp. 1086-1090 ◽  
Author(s):  
Yih-Min Yeh ◽  
Chin-Sung Chen ◽  
Ming-Hung Tsai ◽  
Yih-Chuen Shyng ◽  
Sheng-Yang Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document