Early Sevier orogenic deformation exerted principal control on changes in depositional environment recorded by the Cretaceous Newark Canyon Formation

2020 ◽  
Vol 90 (9) ◽  
pp. 1175-1197
Author(s):  
Anne C. Fetrow ◽  
Kathryn E. Snell ◽  
Russell V. Di Fiori ◽  
Sean P. Long ◽  
Joshua W. Bonde

ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record.

2019 ◽  
Author(s):  
William A. Matthews ◽  
◽  
Marie-Pier Boivin ◽  
Kirsten Sauer ◽  
Daniel S. Coutts

Author(s):  
SOURABH SHRIVASTAVA ◽  
RAM AVTAR ◽  
PRASANTA KUMAR BAL

The coarse horizontal resolution global climate models (GCMs) have limitations in producing large biases over the mountainous region. Also, single model output or simple multi-model ensemble (SMME) outputs are associated with large biases. While predicting the rainfall extreme events, this study attempts to use an alternative modeling approach by using five different machine learning (ML) algorithms to improve the skill of North American Multi-Model Ensemble (NMME) GCMs during Indian summer monsoon rainfall from 1982 to 2009 by reducing the model biases. Random forest (RF), AdaBoost (Ada), gradient (Grad) boosting, bagging (Bag) and extra (Extra) trees regression models are used and the results from each models are compared against the observations. In simple MME (SMME), a wet bias of 20[Formula: see text]mm/day and an RMSE up to 15[Formula: see text]mm/day are found over the Himalayan region. However, all the ML models can bring down the mean bias up to [Formula: see text][Formula: see text]mm/day and RMSE up to 2[Formula: see text]mm/day. The interannual variability in ML outputs is closer to observation than the SMME. Also, a high correlation from 0.5 to 0.8 is found between in all ML models and then in SMME. Moreover, representation of RF and Grad is found to be best out of all five ML models that represent a high correlation over the Himalayan region. In conclusion, by taking full advantage of different models, the proposed ML-based multi-model ensemble method is shown to be accurate and effective.


Geology ◽  
1983 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Maurice Mattauer ◽  
Bernard Collot ◽  
Jean Van den Driessche

2020 ◽  
Vol 7 ◽  
pp. 1-18
Author(s):  
Janayna Ávila

This article reflects on the issue of the refugees from four photographs of the series Exodus by Brazilian photographer Mauricio Lima, published on the North American newspaper The New York Times and Pulitzer winner in 2016. Its main objective is to analyze the boundaries between the duty of contemporary photojournalism and the obtainmentof images of refugees. For that, we used as theoretical reference reflections proposed by Appadurai, Bauman, Martínez, Sontag, Shore, Rouillé and Zanforlin. Methodologically, we worked with qualitative research and case study from the analysis of the images and bibliographic research. As a result, it is considered that Lima’s images bring original expressive dimension and seek personal interactions to build profound narratives.


Sign in / Sign up

Export Citation Format

Share Document