ON DRILLING FREQUENCY AND MANLY'S ALPHA: TOWARDS A NULL MODEL FOR PREDATOR PREFERENCE IN PALEOECOLOGY

Palaios ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 61-68 ◽  
Author(s):  
JANSEN A. SMITH ◽  
JOHN C. HANDLEY ◽  
GREGORY P. DIETL
Methodology ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Stefan C. Schmukle ◽  
Jochen Hardt

Abstract. Incremental fit indices (IFIs) are regularly used when assessing the fit of structural equation models. IFIs are based on the comparison of the fit of a target model with that of a null model. For maximum-likelihood estimation, IFIs are usually computed by using the χ2 statistics of the maximum-likelihood fitting function (ML-χ2). However, LISREL recently changed the computation of IFIs. Since version 8.52, IFIs reported by LISREL are based on the χ2 statistics of the reweighted least squares fitting function (RLS-χ2). Although both functions lead to the same maximum-likelihood parameter estimates, the two χ2 statistics reach different values. Because these differences are especially large for null models, IFIs are affected in particular. Consequently, RLS-χ2 based IFIs in combination with conventional cut-off values explored for ML-χ2 based IFIs may lead to a wrong acceptance of models. We demonstrate this point by a confirmatory factor analysis in a sample of 2449 subjects.


2019 ◽  
Author(s):  
Joel L Pick ◽  
Nyil Khwaja ◽  
Michael A. Spence ◽  
Malika Ihle ◽  
Shinichi Nakagawa

We often quantify a behaviour by counting the number of times it occurs within a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest to behavioural and evolutionary ecologists such as R2, repeatability (intra-class correlation, ICC) and heritability. Through introducing a null model, the Poisson process, for modelling the frequency of behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes comparisons between studies and species problematic, because the magnitude of the error depends on how frequently the behaviour has been observed (e.g. as a function of the observation period) as well as how biologically variable the behaviour is. Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental provisioning rate in birds, we assess the applicability of our null model for modelling the frequency of behaviour. We then review recent literature and demonstrate that the error is rarely accounted for in current analyses. We highlight the problems that arise from this and provide solutions. We further discuss the biological implications of deviations from our null model, and highlight the new avenues of research that they may provide. Adopting our recommendations into analyses of behavioural counts will improve the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.


2019 ◽  
Vol 53 (5) ◽  
pp. 417-422
Author(s):  
P. De los Ríos ◽  
E. Ibáñez Arancibia

Abstract The coastal marine ecosystems in Easter Island have been poorly studied, and the main studies were isolated species records based on scientific expeditions. The aim of the present study is to apply a spatial distribution analysis and niche sharing null model in published data on intertidal marine gastropods and decapods in rocky shore in Easter Island based in field works in 2010, and published information from CIMAR cruiser in 2004. The field data revealed the presence of decapods Planes minutus (Linnaeus, 1758) and Leptograpsus variegatus (Fabricius, 1793), whereas it was observed the gastropods Nodilittorina pyramidalis pascua Rosewater, 1970 and Nerita morio (G. B. Sowerby I., 1833). The available information revealed the presence of more species in data collected in 2004 in comparison to data collected in 2010, with one species markedly dominant in comparison to the other species. The spatial distribution of species reported in field works revealed that P. minutus and N. morio have aggregated pattern and negative binomial distribution, L. variegatus had uniform pattern with binomial distribution, and finally N. pyramidalis pascua, in spite of aggregated distribution pattern, had not negative binomial distribution. Finally, the results of null model revealed that the species reported did not share ecological niche due to competition absence. The results would agree with other similar information about littoral and sub-littoral fauna for Easter Island.


2019 ◽  
Author(s):  
Guanglei Cui ◽  
Alan P. Graves ◽  
Eric S. Manas

Relative binding affinity prediction is a critical component in computer aided drug design. Significant amount of effort has been dedicated to developing rapid and reliable in silico methods. However, robust assessment of their performance is still a complicated issue, as it requires a performance measure applicable in the prospective setting and more importantly a true null model that defines the expected performance of random in an objective manner. Although many performance metrics, such as correlation coefficient (r2), mean unsigned error (MUE), and room mean square error (RMSE), are frequently used in the literature, a true and non-trivial null model has yet been identified. To address this problem, here we introduce an interval estimate as an additional measure, namely prediction interval (PI), which can be estimated from the error distribution of the predictions. The benefits of using the interval estimate are 1) it provides the uncertainty range in the predicted activities, which is important in prospective applications; 2) a true null model with well-defined PI can be established. We provide one such example termed Gaussian Random Affinity Model (GRAM), which is based on the empirical observation that the affinity change in a typical lead optimization effort has the tendency to distribute normally N (0, s). Having an analytically defined PI that only depends on the variation in the activities, GRAM should in principle allow us to compare the performance of relative binding affinity prediction methods in a standard way, ultimately critical to measuring the progress made in algorithm development.<br>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadamori Kojaku ◽  
Giacomo Livan ◽  
Naoki Masuda

AbstractThe ever-increasing competitiveness in the academic publishing market incentivizes journal editors to pursue higher impact factors. This translates into journals becoming more selective, and, ultimately, into higher publication standards. However, the fixation on higher impact factors leads some journals to artificially boost impact factors through the coordinated effort of a “citation cartel” of journals. “Citation cartel” behavior has become increasingly common in recent years, with several instances being reported. Here, we propose an algorithm—named CIDRE—to detect anomalous groups of journals that exchange citations at excessively high rates when compared against a null model that accounts for scientific communities and journal size. CIDRE detects more than half of the journals suspended from Journal Citation Reports due to anomalous citation behavior in the year of suspension or in advance. Furthermore, CIDRE detects many new anomalous groups, where the impact factors of the member journals are lifted substantially higher by the citations from other member journals. We describe a number of such examples in detail and discuss the implications of our findings with regard to the current academic climate.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1855-1861 ◽  
Author(s):  
Montgomery Slatkin ◽  
Bruce Rannala

Abstract A theory is developed that provides the sampling distribution of low frequency alleles at a single locus under the assumption that each allele is the result of a unique mutation. The numbers of copies of each allele is assumed to follow a linear birth-death process with sampling. If the population is of constant size, standard results from theory of birth-death processes show that the distribution of numbers of copies of each allele is logarithmic and that the joint distribution of numbers of copies of k alleles found in a sample of size n follows the Ewens sampling distribution. If the population from which the sample was obtained was increasing in size, if there are different selective classes of alleles, or if there are differences in penetrance among alleles, the Ewens distribution no longer applies. Likelihood functions for a given set of observations are obtained under different alternative hypotheses. These results are applied to published data from the BRCA1 locus (associated with early onset breast cancer) and the factor VIII locus (associated with hemophilia A) in humans. In both cases, the sampling distribution of alleles allows rejection of the null hypothesis, but relatively small deviations from the null model can account for the data. In particular, roughly the same population growth rate appears consistent with both data sets.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Philipp Neubauer ◽  
Ken H Andersen

Abstract Increasing temperatures under climate change are thought to affect individual physiology of fish and other ectotherms through increases in metabolic demands, leading to changes in species performance with concomitant effects on species ecology. Although intuitively appealing, the driving mechanism behind thermal performance is contested; thermal performance (e.g. growth) appears correlated with metabolic scope (i.e. oxygen availability for activity) for a number of species, but a substantial number of datasets do not support oxygen limitation of long-term performance. Whether or not oxygen limitations via the metabolic scope, or a lack thereof, have major ecological consequences remains a highly contested question. size and trait-based model of energy and oxygen budgets to determine the relative influence of metabolic rates, oxygen limitation and environmental conditions on ectotherm performance. We show that oxygen limitation is not necessary to explain performance variation with temperature. Oxygen can drastically limit performance and fitness, especially at temperature extremes, but changes in thermal performance are primarily driven by the interplay between changing metabolic rates and species ecology. Furthermore, our model reveals that fitness trends with temperature can oppose trends in growth, suggesting a potential explanation for the paradox that species often occur at lower temperatures than their growth optimum. Our model provides a mechanistic underpinning that can provide general and realistic predictions about temperature impacts on the performance of fish and other ectotherms and function as a null model for contrasting temperature impacts on species with different metabolic and ecological traits.


Sign in / Sign up

Export Citation Format

Share Document