scholarly journals Production, Properties and Swelling of Composite Pectic-Gel Particles in an Artificial Gastric Environment

2021 ◽  
Vol 11 (2) ◽  
pp. 173-176
Author(s):  
Anatoly Shubakov ◽  
Elena Mikhailova

The purpose of the present work was to obtain and study the properties of composite calcium-pectic gel particles (CaPGPs) obtained from aqueous solutions of apple pectin (AP) in the concentration of 2% and pectin heracleuman (HS) in the concentration of 3% in the presence of Ca2+ ions (0.34 M). The swelling of the obtained CaPGPs in an artificial gastric environment was also investigated. Methods and Results: We used commercial AP AU701 (AP, Herbstreith & Fox KG, Germany) and HP isolated from the aerial part of the Sosnovskyi hogweed Heracleum sosnowskyi Manden. Composite CaPGPs were obtained from aqueous solutions of AP (2%) and HS (3%) in the presence of Ca2+ ions (0.34 M) by the method of ionotropic gelation. The diameter and density of CaPGPs were determined. Dry gel particles from 2% AP were larger (1.18±0.19 mm) than dry gel particles from 3% HS (1.04±0.07 mm) and dry composite gel particles (1.01±0.06 mm). However, dry composite gel particles and dry gel particles from HS were approximately 3 times denser than dry gel particles from AP. Composite CaPGPs swelled by 74.2% in simulated gastric fluid (SGF). The degree of swelling in SGF of CaPGPs formed from HS was 15.6% lower, and CaPGPs formed from AP –52.2%.

2021 ◽  
Vol 11 (4) ◽  
pp. 456-459
Author(s):  
Elena Mikhailova ◽  
Anatoly Shubakov

The purpose of the present work was to obtain and study the properties of composite calcium-agar-pectic gel particles (CaAPGPs) obtained from aqueous solutions of agar (AA) and apple pectin (AP), from aqueous solutions of agar (AA) and pectin heracleuman (HS) in the presence of Ca2+ ions (0.34 M). The swelling of the obtained composite CaAPGPs in an artificial gastroenteric environment was also investigated. Methods and Results: We used commercial AP AU701 (AP, Herbstreith & Fox KG, Germany), HS isolated from the aerial part of the Sosnovskyi hogweed Heracleum sosnowskyi Manden, and food agar (AA). Spherical composite CaAPGPs were obtained from low-methyl esterified AP with a molecular weight of 406 kDa, pectin HS with a molecular weight >300 kDa, and food agar (AA) in the presence of Ca2+ ions (0.34 M) as a cross-linking agent by the method of ionotropic gelation. It was found that dry CaAPGPs based on AP (Ca-AA-AP) have a diameter of 1.16±0.14-1.23±0.05 mm, which was greater than the diameter of dry CaAPGPs based on HS (Ca-AA-HS) (0.95±0.12-1.16±0.05 mm). The density of dry CaAPGPs based on AP (Ca-AA-AP) with an increase in the concentration of AP in their composition from 1% to 2% increased by 1.7 times – from 0.37±0.07 mg/mm3 to 0.63±0.05 mg/mm3. Dry composite CaAPGPs based on HS (Ca-AA-HS) were denser. With an increase in the HS concentration in their composition from 1% to 2%, the degree of particle density increases by 2.2 – from 0.45±0.03 mg/mm3 to 0.97±0.19 mg/mm3. The swelling and degradation of the obtained dry composite CaAPGPs in an artificial gastroenteric environment were studied. It was found that CaAPGPs formed from 1% AP and 2% AA degraded almost immediately in SIF. Whereas, CaAPGPs formed from 2% AP and 1% or 2% AA completely degraded in SCF after 1 hour of incubation in it. CaAPGPs formed from 1% HS and 2% AA, and particles obtained from 2% HS and 1% AA, remained stable in SIF, and then completely degraded immediately upon entering in SCF. CaAPGPs, consisting of 2% HS and 2% AA, dissolve in SCF after 1 hour of incubation in it.


2021 ◽  
Vol 11 (1) ◽  
pp. 50-52
Author(s):  
Anatoly Shubakov ◽  
Elena Mikhailova

The purpose of the this research was to obtain and study the properties of copper-pectic gel particles (CuPGPs) obtained from aqueous solutions of apple pectin (AP) in the concentration range of 1%-5% in the presence of Cu2+ ions. Methods and Results: We used commercial AP AU701 (Herbstreith & Fox KG, Germany). CuPGPs were obtained from aqueous solutions of AP (1%, 3%, 5%) in the presence of Cu2+ ions (1%-10%) by the method of ionotropic gelation, The diameter and density of the CuPGPs were determined. Dry CuPGPs formed from 5% AP with all tested concentrations of copper ions have the largest diameter (0.96-1.15mm), and gel particles formed on the basis of 1% AP have the smallest diameter (0.42-0.74mm). CuPGPs formed from 5% AP have the highest density (1.43-1.65 mg/mm3), and CuPGPs formed on the basis of 1% AP have the lowest density (0.65-0.92 mg/mm3). Gel particles obtained from 1% AP swelled in simulated gastric fluid (SGF) by 161% and then completely degraded immediately upon entering in simulated intestinal fluid (SIF). CuPGPs obtained from 3% AP swelled by 166% in simulated gastric fluid (SGF) and 148% in SIF, and completely degraded in SIF after 2.5 hours of incubation in it. Gel particles obtained from 5% AP in the presence of 10% Cu2+ swelled most strongly – by 173% in SGF and by 208% in SIF. And then, they degraded after 8 hours of incubation in simulated colonic fluid (SCF).


2020 ◽  
Vol 10 (4) ◽  
pp. 421-423
Author(s):  
Anatoly Shubakov ◽  
Elena Mikhailova

Spherical copper-pectic gel particles (CuPGPs) were obtained from aqueous solutions of commercial apple pectin (AP) AU701 (2%, 4%) in the presence of copper ions (CuCl2, 1%-10%), and their morphological (diameter) and structural-mechanical (density) characteristics were studied. It was found that with an increase in the concentration of AP from 2% to 4%, the diameter of dry gel particles at all tested concentrations of copper chloride (1-10%) increased from 0.64-0.76 mm (2% AP) to 0.87-0.94 mm (4% AP), and that the density of dry gel particles with an increase in the concentration of AP also increased from 1.27-1.48 mg/mm3 (2% AP) to 1.42-1.55 mg/mm3 (4% AP). The swelling and degradation of the obtained CuPGPs in an artificial gastroenteric environment was studied. It has been established that the CuPGPs based on 4% AP with 10% CuCl2 have the highest degree of swelling in the acidic environment of the intestinal gastric fluid (SGF). CuPGPs, depending on the concentration of AP and copper ions, are degraded in different parts of the intestine—in simulated intestinal fluid (SIF) or simulated colonic fluid (SCF).


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


2019 ◽  
Vol 127 (5) ◽  
pp. 1564-1575 ◽  
Author(s):  
V.S. Castro ◽  
D.K.A. Rosario ◽  
Y.S. Mutz ◽  
A.C.C. Paletta ◽  
E.E.S. Figueiredo ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 723
Author(s):  
He Xia ◽  
Ang Li ◽  
Jia Man ◽  
Jianyong Li ◽  
Jianfeng Li

In this work, we used a co-flow microfluidic device with an injection and a collection tube to generate droplets with different layers due to phase separation. The phase separation system consisted of poly(ethylene glycol) diacrylate 700 (PEGDA 700), PEGDA 250, and sodium alginate aqueous solution. When the mixture droplets formed in the outer phase, PEGDA 700 in the droplets would transfer into the outer aqueous solution, while PEGDA 250 still stayed in the initial droplet, breaking the miscibility equilibrium of the mixture and triggering the phase separation. As the phase separation proceeded, new cores emerged in the droplets, gradually forming the second and third layers. Emulsion droplets with different layers were polymerized under ultraviolet (UV) irradiation at different stages of phase separation to obtain microspheres. Microspheres with different layers showed various release behaviors in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The release rate decreased with the increase in the number of layers, which showed a potential application in sustained drug release.


2008 ◽  
Vol 21 (11) ◽  
pp. 2106-2110 ◽  
Author(s):  
Graham N. George ◽  
Satya P. Singh ◽  
Roger C. Prince ◽  
Ingrid J. Pickering

1994 ◽  
Vol 83 (11) ◽  
pp. 1543-1547 ◽  
Author(s):  
Tian Jian Yang ◽  
Quan Long Pu ◽  
Shen K. Yang

2012 ◽  
Vol 560-561 ◽  
pp. 434-437 ◽  
Author(s):  
Lan Wang ◽  
Wen Ji Guo ◽  
Yan Zhao Zhao

The objective of this paper was to prepare the composite of crefradine/montmorillionite in the method of solution intercalation. The drug load and intercalation rate varied with the drug concentration. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) Spectroscopy, and thermal analysis (TG-DSC) were applied to characterize composite mentioned above. Together with drug release tests, results indicate cefradine intercalated into montmorillionite.The release profiles of cefradine/MMT in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37°Cduring 10h are shown in Fig. 4. The amount of cefradine in the beginning 2h came up to 35% and 50%, and in the following time, cefradine released slowly. The release behaviors met the requirements of sustained release.


Sign in / Sign up

Export Citation Format

Share Document