scholarly journals The Impact of Data Segmentation in Predicting Monthly Building Energy Use with Support Vector Regression

Author(s):  
William Mounter ◽  
Huda Dawood ◽  
Nashwan Dawood

AbstractAdvances in metering technologies and machine learning methods provide both opportunities and challenges for predicting building energy usage in the both the short and long term. However, there are minimal studies on comparing machine learning techniques in predicting building energy usage on their rolling horizon, compared with comparisons based upon a singular forecast range. With the majority of forecasts ranges being within the range of one week, due to the significant increases in error beyond short term building energy prediction. The aim of this paper is to investigate how the accuracy of building energy predictions can be improved for long term predictions, in part of a larger study into which machine learning techniques predict more accuracy within different forecast ranges. In this case study the ‘Clarendon building’ of Teesside University was selected for use in using it’s BMS data (Building Management System) to predict the building’s overall energy usage with Support Vector Regression. Examining how altering what data is used to train the models, impacts their overall accuracy. Such as by segmenting the model by building modes (Active and dormant), or by days of the week (Weekdays and weekends). Of which it was observed that modelling building weekday and weekend energy usage, lead to a reduction of 11% MAPE on average compared with unsegmented predictions.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5947
Author(s):  
William Mounter ◽  
Chris Ogwumike ◽  
Huda Dawood ◽  
Nashwan Dawood

Advances in metering technologies and emerging energy forecast strategies provide opportunities and challenges for predicting both short and long-term building energy usage. Machine learning is an important energy prediction technique, and is significantly gaining research attention. The use of different machine learning techniques based on a rolling-horizon framework can help to reduce the prediction error over time. Due to the significant increases in error beyond short-term energy forecasts, most reported energy forecasts based on statistical and machine learning techniques are within the range of one week. The aim of this study was to investigate how facility managers can improve the accuracy of their building’s long-term energy forecasts. This paper presents an extensive study of machine learning and data processing techniques and how they can more accurately predict within different forecast ranges. The Clarendon building of Teesside University was selected as a case study to demonstrate the prediction of overall energy usage with different machine learning techniques such as polynomial regression (PR), support vector regression (SVR) and artificial neural networks (ANNs). This study further examined how preprocessing training data for prediction models can impact the overall accuracy, such as via segmenting the training data by building modes (active and dormant), or by days of the week (weekdays and weekends). The results presented in this paper illustrate a significant reduction in the mean absolute percentage error (MAPE) for segmented building (weekday and weekend) energy usage prediction when compared to unsegmented monthly predictions. A reduction in MAPE of 5.27%, 11.45%, and 12.03% was achieved with PR, SVR and ANN, respectively.


2020 ◽  
Vol 16 (1) ◽  
pp. 97-102
Author(s):  
Devi Wulandari ◽  
Agus Subekti

One of the common diabetes factors that people hear is that they consume too much or often consume sweet foods or drinks so that blood sugar in the human body increases. The times and increasingly sophisticated technology make it easier for someone to be able to predict a disease such as diabetes with machine learning techniques. Therefore, from the existing problems, a machine learning technique will be made in predicting glucose levels in diabetics. The aim is to predict glucose levels in diabetics and find the best algorithm from several comparison algorithms. The results of the experiments carried out by the support vector regression algorithm have a lower mean squared error value of 28.9480 compared to other comparative algorithms and visualize the error classification seen that Instance no 47 has a prediction of the highest plasma glucose value of 189.2305.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7034
Author(s):  
Yue Xu ◽  
Waqas Ahmad ◽  
Ayaz Ahmad ◽  
Krzysztof Adam Ostrowski ◽  
Marta Dudek ◽  
...  

The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.


2016 ◽  
Vol 9 (12) ◽  
pp. 13
Author(s):  
Philipp Kallerhoff

<p>This paper applies machine learning techniques to style investing. Support Vector Regression is applied to multi-factor investing based on momentum, dividend, quality, volatility and growth. The results show that Support Vector Regression selects stocks consistently with a higher efficiency ratio than a broad market investment and outperforms linear regression methods. The methods are applied to global stocks in the MSCI World index between 1996 and 2016. The behavior of both models is analyzed for economic sectors and over time. Interestingly, factors like low-volatility and momentum contribute both positively and negatively in some economic sectors and certain time periods.</p>


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2021 ◽  
Author(s):  
Nikos Fazakis ◽  
Elias Dritsas ◽  
Otilia Kocsis ◽  
Nikos Fakotakis ◽  
Konstantinos Moustakas

2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Sign in / Sign up

Export Citation Format

Share Document