REGAL; reseau GPS permanent dans les Alpes occidentales; configuration et premiers resultats

2001 ◽  
Vol 172 (2) ◽  
pp. 141-158 ◽  
Author(s):  
Eric Calais ◽  
Roger Bayer ◽  
Jean Chery ◽  
Fabrice Cotton ◽  
Erik Doerflinger ◽  
...  

Abstract The kinematics of the present-day deformation in the western Alps is still poorly known, mostly because of a lack of direct measurements of block motion and internal deformation. Geodetic measurements have the potential to provide quantitative estimates of crustal strain and block motion in the Alps, but the low expected rates, close to the accuracy of the geodetic techniques, make such measurements challenging. Indeed, an analysis of 2.5 years of continuous GPS data at Torino (Italy), Grasse (France), and Zimmerwald (Switzerland), showed that the present-day differential motion across the western Alps does not exceed 3 mm/yr [Calais, 1999]. Continuous measurements performed at permanent GPS stations provide unique data sets for rigorously assessing crustal deformation in regions of low strain rates by reducing the amount of time necessary to detect a significant strain signal, minimizing systematic errors, providing continuous position time series, and possibly capturing co- and post-seismic motion. In 1997, we started the implementation of a network of permanent GPS stations in the western Alps and their surroundings (REGAL network). The REGAL network mostly operates dual frequency Ashtech Z12 CGRS GPS stations with choke-ring antennae. In most cases, the GPS antenna is installed on top of a 1.5 to 2.5 m high concrete pilar directly anchored into the bedrock. The data are currently downloaded once daily and sent to a data center located at Geosciences Azur, Sophia Antipolis where they are converted into RINEX format, quality checked, archived, and made available to users. Data are freely available in raw and RINEX format at http://kreiz.unice.fr/regal/. The GPS data from the REGAL network are routinely processed with the GAMIT software, together with 10 global IGS stations (KOSG, WZTR, NOTO, MATE, GRAZ, EBRE, VILL, CAGL, MEDI, UPAD) that serve as ties with the ITRF97. We also include the stations ZIMM, TORI, GRAS, TOUL, GENO, HFLK, OBER because of their tectonic interest. We obtain long term repeatabilities on the order of 2-3 mm for the horizontal components, 8-10 mm for the vertical component. Using a noise model that combines white and coloured noise (flicker noise, spectral index 1), we find uncertainties on the velocities ranging from 1 mm/yr for the oldest stations (ZIMM, GRAS, TOUL, TORI, SJDV) to 4-5 mm/yr for the most recently installed (CHAT, MTPL). Station velocities obtained in ITRF97 are rotated into a Eurasian reference by substracting the rigid rotation computed from ITRF97 velocities at 11 central European sites located away from major active tectonic structures (GOPE, JOZE, BOR1, LAMA, ZWEN, POTS, WETT, GRAZ, PENC, Effelsberg, ONSA). The resulting velocity field shows residual motions with respect to Eurasia lower than 3 mm/yr. We obtain at TORI, in the Po plain, a residual velocity of 2.3+ or -0.8 mm/yr to the SSW and a velocity of 1.9+ or -1.1 mm/yr at SJDV, on the Alpine foreland. These results indicate that the current kinematic boundary conditions across the western Alps are extensional, as also shown by the SJDV-TORI baseline time series. We obtain at MODA (internal zones) a residual velocity of 1.2+ or -1.2 mm/yr to the SSE. The MODA-FCLZ baseline show lengthening at a rate of 1.6+ or -0.8 mm/yr. These results are still marginally significant but suggest that the current deformation regime along the Lyon-Torino transect is extension, as also indicated by from recent seismotectonic data. It is in qualitative agreement with local geodetic measurements in the internal zones (Briancon area) but excludes more than 2.4 mm/yr of extension (FCLZ-MODA baseline, upper uncertainty limit at 95% confidence). Our results indicate a different tectonic regime in the southern part of the western Alps and Provence, with NW-SE to N-S compression. The GRAS-TORI baseline, for instance, shows shortening at a rate of 1.4+ or -1.0 mm/an. This result is consistent with seismotectonic data and local geodetic measurements in these areas. The Middle Durance fault zone, one of the main active faults in this area, is crossed by the GINA-MICH baseline, which shows shortening at a rate of 1.0+ or -0.8 mm/an. This result is only marginally significant, but confirms the upper bound of 2 mm/yr obtained from triangulation-GPS comparisons. The REGAL permanent GPS network has been operating since the end of 1997 for the oldest stations and will continue to be densified. Although they are still close to or within their associated uncertainties, preliminary results provide, for the first time, a direct estimate of crustal deformation across and within the western Alps.

2021 ◽  
Vol 13 (14) ◽  
pp. 2783
Author(s):  
Sorin Nistor ◽  
Norbert-Szabolcs Suba ◽  
Kamil Maciuk ◽  
Jacek Kudrys ◽  
Eduard Ilie Nastase ◽  
...  

This study evaluates the EUREF Permanent Network (EPN) station position time series of approximately 200 GNSS stations subject to the Repro 2 reprocessing campaign in order to characterize the dominant types of noise and amplitude and their impact on estimated velocity values and associated uncertainties. The visual inspection on how different noise model represents the analysed data was done using the power spectral density of the residuals and the estimated noise model and it is coherent with the calculated Allan deviation (ADEV)-white and flicker noise. The velocities resulted from the dominant noise model are compared to the velocity obtained by using the Median Interannual Difference Adjusted for Skewness (MIDAS). The results show that only 3 stations present a dominant random walk noise model compared to flicker and powerlaw noise model for the horizontal and vertical components. We concluded that the velocities for the horizontal and vertical component show similar values in the case of MIDAS and maximum likelihood estimation (MLE), but we also found that the associated uncertainties from MIDAS are higher compared to the uncertainties from MLE. Additionally, we concluded that there is a spatial correlation in noise amplitude, and also regarding the differences in velocity uncertainties for the Up component.


2019 ◽  
Vol 11 (17) ◽  
pp. 1975 ◽  
Author(s):  
Yuanjin Pan ◽  
Ruizhi Chen ◽  
Hao Ding ◽  
Xinyu Xu ◽  
Gang Zheng ◽  
...  

Surface and deep potential geophysical signals respond to the spatial redistribution of global mass variations, which may be monitored by geodetic observations. In this study, we analyze dense Global Positioning System (GPS) time series in the Eastern Tibetan Plateau using principal component analysis (PCA) and wavelet time-frequency spectra. The oscillations of interannual and residual signals are clearly identified in the common mode component (CMC) decomposed from the dense GPS time series from 2000 to 2018. The newly developed spherical harmonic coefficients of the Gravity Recovery and Climate Experiment Release-06 (GRACE RL06) are adopted to estimate the seasonal and interannual patterns in this region, revealing hydrologic and atmospheric/nontidal ocean loads. We stack the averaged elastic GRACE-derived loading displacements to identify the potential physical significance of the CMC in the GPS time series. Interannual nonlinear signals with a period of ~3 to ~4 years in the CMC (the scaled principal components from PC1 to PC3) are found to be predominantly related to hydrologic loading displacements, which respond to signals (El Niño/La Niña) of global climate change. We find an obvious signal with a period of ~6 yr on the vertical component that could be caused by mantle-inner core gravity coupling. Moreover, we evaluate the CMC’s effect on the GPS-derived velocities and confirm that removing the CMC can improve the recognition of nontectonic crustal deformation, especially on the vertical component. Furthermore, the effects of the CMC on the three-dimensional velocity and uncertainty are presented to reveal the significant crustal deformation and dynamic processes of the Eastern Tibetan Plateau.


2020 ◽  
Author(s):  
weiwei wu ◽  
Guojie Meng ◽  
Jicang Wu ◽  
Guoqiang Zhao

Abstract It is vital in the study of crustal deformation to reduce system errors and enhance the accuracy of GPS coordinate time series. To eliminate system errors associated in the coordinate time series, which are related to the terrestrial reference frame (TRF) realization, we develop a recursive TRF realization strategy in regional GPS data processing. We have processed the whole set of CMONOC (Crustal Movement Observation Network of China) GPS data by the Bernese software, and employ the controlled datum removal (CDR) filter to solve the rank defect problem in the daily coordinate normal equations. On the recursive TRF realization of stations’ coordinates, we iteratively perform time series modeling with integral trajectory models, TRF realization with all continuous stations treated as “pseudo” fiducial stations, and frame alignment to the ITRF2014 with the 6-parameters Helmert transformation. We obtain the final coordinate time series through 3 times of iterations for the CMONOC data. Compared to the results derived from the conventional TRF realization strategy with the average root mean squares (RMS) being 1.98mm, 2.62 mm and 5.39 mm for east, north and up components, respectively, the average RMS earn significant reduction up to 30%, 43% and 16% in the first loop, with their quantities being 1.41 mm, 1.51 mm and 4.57 mm for east, north and up components, respectively, and negligible changes in the following 2 loops. In contrast to previous studies, our strategy is feasible in the processing of regional geodetic networks, and is concentrated on the TRF-related system errors without any pre-assumption and spatial limitation. In essence, our recursive strategy is to tighten the constraints for the CMONOC GPS stations in the TRF realization through the leaning of the barycenter of the processed geodetic network, thus inevitably loosening the constraints for other globally distributed stations, and slightly magnifying their RMS. On the whole, the north component of coordinates time series has a maximum RMS reduction, resulting in identical precision for both horizontal components, thus indicating that our strategy remedies the frame defects stemming from the extremely uneven distribution of the reference network, and retrieves the “real” precision of GPS observations. The insignificant RMS reduction on the vertical component may be attributed to insufficient time series modeling. Our recursive TRF realization strategy can benefit the velocity estimation for campaign stations.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3353 ◽  
Author(s):  
Xiaoning Su ◽  
Guojie Meng ◽  
Haili Sun ◽  
Weiwei Wu

The Crustal Movement Observation Network of China (CMONOC) has begun receiving BeiDou Navigation Satellite System (BDS) observations since 2015, and accumulated more than 2.5 years of data. BDS observations has been widely applied in many fields, and long-term continuous data provide a new strategy for the study of crustal deformation in China. This paper focuses on the evaluation of BDS positioning performance and its potential application on crustal deformation in CMONOC. According to the comparative analysis on multipath delay (MPD) and signal to noise ratio (SNR) between BDS and GPS data, the data quality of BDS is at the same level with GPS measurements in COMONC. The spatial distribution of BDS positioning accuracy evaluated as the root mean square (RMS) of daily residual position time series on horizontal component is latitude-dependent, declining with the increasing of station latitude, while the vertical one is randomly distributed in China. The mean RMS of BDS position residual time series is 7 mm and 22 mm on horizontal and vertical components, respectively, and annual periodicity in position time series can be identified by BDS data. In view of the accuracy of BDS positioning, there are no systematic differences between GPS and BDS results. Based on time series analysis with data volume being 2.5 years, the noise characteristics of BDS daily position time series is time-correlated and corresponding noise is white plus flicker noise model, and the derived mean RMS of the BDS velocities is 1.2, 1.5, and 4.1 mm/year on north, east, and up components, respectively. The imperfect performance of BDS positioning relative to GPS is likely attributed to the relatively low accuracy of BDS ephemeris, and the sparse amount of MEO satellites distribution in the BDS constellation. It is expectable to study crustal deformation in CMONOC by BDS with the gradual maturity of its constellation and the accumulation of observations.


Author(s):  
Nachiketa Chakraborty

With an explosion of data in the near future, from observatories spanning from radio to gamma-rays, we have entered the era of time domain astronomy. Historically, this field has been limited to modeling the temporal structure with time-series simulations limited to energy ranges blessed with excellent statistics as in X-rays. In addition to ever increasing volumes and variety of astronomical lightcurves, there's a plethora of different types of transients detected not only across the electromagnetic spectrum, but indeed across multiple messengers like counterparts for neutrino and gravitational wave sources. As a result, precise, fast forecasting and modeling the lightcurves or time-series will play a crucial role in both understanding the physical processes as well as coordinating multiwavelength and multimessenger campaigns. In this regard, deep learning algorithms such as recurrent neural networks (RNNs) should prove extremely powerful for forecasting as it has in several other domains. Here we test the performance of a very successful class of RNNs, the Long Short Term Memory (LSTM) algorithms with simulated lightcurves. We focus on univariate forecasting of types of lightcurves typically found in active galactic nuclei (AGN) observations. Specifically, we explore the sensitivity of training and test losses to key parameters of the LSTM network and data characteristics namely gaps and complexity measured in terms of number of Fourier components. We find that typically, the performances of LSTMs are better for pink or flicker noise type sources. The key parameters on which performance is dependent are batch size for LSTM and the gap percentage of the lightcurves. While a batch size of $10-30$ seems optimal, the most optimal test and train losses are under $10 \%$ of missing data for both periodic and random gaps in pink noise. The performance is far worse for red noise. This compromises detectability of transients. The performance gets monotonically worse for data complexity measured in terms of number of Fourier components which is especially relevant in the context of complicated quasi-periodic signals buried under noise. Thus, we show that time-series simulations are excellent guides for use of RNN-LSTMs in forecasting.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 83 ◽  
Author(s):  
Rolly E. Rimando ◽  
Jeremy M. Rimando

The Vigan-Aggao Fault is a 140-km-long complex active fault system consisting of multiple traces in the westernmost part of the Philippine Fault Zone (PFZ) in northern Luzon, the Philippines. In this paper, its traces, segmentation, and oblique left-lateral strike-slip motion are determined from horizontal and vertical displacements measured from over a thousand piercing points pricked from displaced spurs and streams observed from Google Earth Pro satellite images. This work marks the first instance of the extensive use of Google Earth as a tool in mapping and determining the kinematics of active faults. Complete 3D image coverage of a major thoroughgoing active fault system is freely and easily accessible on the Google Earth Pro platform. It provides a great advantage to researchers collecting morphotectonic displacement data, especially where access to aerial photos covering the entire fault system is next to impossible. This tool has not been applied in the past due to apprehensions on the positional measurement accuracy (mainly of the vertical component). The new method outlined in this paper demonstrates the applicability of this tool in the detailed mapping of active fault traces through a neotectonic analysis of fault-zone features. From the sense of motion of the active faults in northern Luzon and of the major bounding faults in central Luzon, the nature of deformation in these regions can be inferred. An understanding of the kinematics is critical in appreciating the distribution and the preferred mode of accommodation of deformation by faulting in central and northern Luzon resulting from oblique convergence of the Sunda Plate and the Philippine Sea Plate. The location, extent, segmentation patterns, and sense of motion of active faults are critical in coming up with reasonable estimates of the hazards involved and identifying areas prone to these hazards. The magnitude of earthquakes is also partly dependent on the type and nature of fault movement. With a proper evaluation of these parameters, earthquake hazards and their effects in different tectonic settings worldwide can be estimated more accurately.


Sign in / Sign up

Export Citation Format

Share Document