scholarly journals Latest Quaternary Active Faulting and Paleoearthquakes on the Southern Segment of the Xiaojiang Fault Zone, SE Tibetan Plateau

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Peng Guo ◽  
Zhujun Han ◽  
Shaopeng Dong ◽  
Zebin Mao ◽  
Nan Hu ◽  
...  

Abstract The Xiaojiang fault zone (XJFZ) is an important part of the Xianshuihe-Xiaojiang fault system, acting as the eastern boundary of the Chuan-Dian block on the southeastern margin of the Tibetan Plateau and accommodating the lateral extrusion of the block. The faulting activity and paleoseismic history on the southern segment of the XJFZ remain poorly understood. Here, trench excavations and radiocarbon dating revealed that four recent surface-rupturing paleoearthquakes have occurred on the Jianshui fault (JSF) in the southern segment of the XJFZ since ~15370 yr BP. The ages of these events, labeled E4-E1 from oldest to youngest, are limited to the following time ranges: 15360-12755, 10845-6900, 1455-670, and 635-145 yr BP, respectively. The most recent event E1 was most likely the 1606 Jianshui earthquake. These events appear to occur unregularly in time. The time interval between the last two events is 726±235 yr, and the average recurrence interval for all four events is 4589±3132 yr. The deformed strata show that the JSF is characterized kinematically by transtension, which likely respond to the apparent change in the direction of clockwise rotation of the Chuan-Dian block around the eastern Himalayan syntaxis. Combined with the analysis of the neighboring NW-striking faults, our study suggests that the south-southeastward motion of the Chuan-Dian block is likely to be firstly accommodated in part by the right-lateral shear and dip-slip motions of the Qujiang and Shiping faults and continues across the Red River fault zone, then is transmitted southward along the Dien Bien Phu fault. Therefore, the southern segment of the XJFZ plays a dominant role in the tectonic deformation of the southeastern Chuan-Dian block, with a high seismic hazard.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


The Tibetan Plateau, between the Kunlun Shan and the Himalayas, consists of terranes accreted successively to Eurasia. The northernmost, the Songban Ganzi Terrane, was accreted to the Kunlun (Tarim-North China Terrane) along the Kunlun-Qinling Suture during the late Permian. The Qiangtang Terrane accreted to the Songban-Ganzi along the Jinsha Suture during the late Triassic or earliest Jurassic, the Lhasa Terrane to the Qiangtang along the Banggong Suture during the late Jurassic and, finally, Peninsular India to the Lhasa Terrane along the Zangbo Suture during the Middle Eocene. The Kunlun Shan, Qiangtang and Lhasa Terranes are all underlain by Precambrian continental crust at least a billion years old. The Qiangtang and Lhasa Terranes came from Gondwanaland. Substantial southward ophiolite obduction occurred across the Lhasa Terrane from the Banggong Suture in the late Jurassic and from the Zangbo Suture in the latest Cretaceous-earliest Palaeocene. Palaeomagnetic data suggest successive wide Palaeotethyan oceans during the late Palaeozoic and early Mesozoic and a Neotethys which was at least 6000 km wide during the mid-Cretaceous. Thickening of the Tibetan crust to almost double the normal thickness occurred by northward-migrating north-south shortening and vertical stretching during the mid-Eocene to earliest Miocene indentation of Asia by India; Neogene strata are almost flat-lying and rest unconformably upon Palaeogene or older strata. Since the early Miocene, the northward motion of India has been accommodated principally by north south shortening both north and south of Tibet. From early Pliocene to the Present, the Tibetan Plateau has risen by about two kilometres and has suffered east-west extension. Little, if any, of the India Eurasia convergence has been accommodated by eastward lateral extrusion.


Sign in / Sign up

Export Citation Format

Share Document