DEEP-SEA BENTHIC FORAMINIFERAL RESPIRATION RATES MEASURED UNDER LABORATORY CONDITIONS

2007 ◽  
Vol 37 (4) ◽  
pp. 281-286 ◽  
Author(s):  
H. Nomaki ◽  
A. Yamaoka ◽  
Y. Shirayama ◽  
H. Kitazato
Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


1995 ◽  
Vol 42 (9) ◽  
pp. 1575-1582 ◽  
Author(s):  
M.-L. Mahaut ◽  
M. Sibuet ◽  
Y. Shirayama
Keyword(s):  
Deep Sea ◽  

Author(s):  
H. Watanabe ◽  
R. Kado ◽  
S. Tsuchida ◽  
H. Miyake ◽  
M. Kyo ◽  
...  

Larvae of the hydrothermal vent barnacle Neoverruca sp. were reared under laboratory conditions and larval development was observed. Under these conditions, the larvae were released from adults as first-stage nauplii, although the larvae of other deep-sea barnacles have generally been considered to be released at a later larval stage such as the cyprid stage. The larvae of Neoverruca sp. were lecithotrophic through six naupliar stages and the subsequent cyprid stage. The larval period of Neoverruca sp. was more than 96 days under the present rearing conditions, which is the longest yet reported for barnacles. Most cyprid larvae, however, exhibited abnormal morphology and no larvae settled successfully on the substrate. These observations suggest that such a long larval period might enable neoverrucid barnacles to disperse between vent fields.


Author(s):  
Eduardo Quiroga ◽  
Renato A. Quiñones ◽  
Rodrigo R. González ◽  
Victor A. Gallardo ◽  
Gerdhard Jessen

The aerobic and anaerobic metabolism of Paraprionospio pinnata were estimated under laboratory conditions. Paraprionospio pinnata is a widely distributed, often dominant polychaete inhabiting sublittoral sediments on the continental shelf off central Chile, where there is a pronounced oxygen minimum zone (OMZ). The aerobic respiration rates ranged from 0.25 to 1.28 ml O2 h-1 g-1 dry weight. Paraprionospio pinnata displayed oxyconformity between 30 mm Hg (4 kPa) and 104 mm Hg (14 kPa) of oxygen tension levels (pO2) under laboratory conditions. We found that P. pinnata is an aerobic oxygen conformer and is able to endure very low oxygen conditions. High anaerobic activity of alanopine dehydrogenase (5.74 ±1.20 μmol NADH min-1 g-1 wet weight) and strombine dehydrogenase (8.82 ±4.04 μmol NADH min-1 g-1 wet weight) were observed. The ratio between the calculated aerobic respiration rates and the electron transfer system activity were 0.28 and 0.12 for normoxic and hypoxic conditions, respectively. Based on the observed respiration rates and the average densities of P. pinnata in the study site, we estimated the population carbon flux via aerobic respiration to be about 32 mg C m-2 d-1 in spring and 80 mg C m-2 d-1 in winter. Paraprionospio pinnata would be using, then, about 8.6% of the total downward flux of organic carbon to the seabed and contributing between 18 and 44% of the total sediment community oxygen consumption.


2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


2006 ◽  
Vol 66 (1b) ◽  
pp. 325-336 ◽  
Author(s):  
C. Resgalla Jr. ◽  
E. S. Brasil ◽  
L. C. Salomão

Physiological studies of the mussel Perna perna in Brazil are almost 30 years behind those of other, more exhaustively investigated species, such as Mytilus edulis. Little is known about the variations in physiological rates due to size and the consequences of maintaining P. perna in laboratory conditions. This work investigated the variations in respiration, clearance, excretion and absorption efficiency rates of P. perna, classified by size and acclimatized in a laboratory, monitoring the mussels’ respiration rates and biometry over a period of 30 days, in laboratory conditions. The respiration, clearance and excretion rates presented an allometric relation with the dry weight of the organisms, with b values of 0.66, 0.48 and 0.91 respectively. On the other hand, these same rates, when considered by weight (specific rates) showed a relationship that was inverse to the size of the organisms. Only the absorption efficiency was independent of the weight of the mussel. In terms of acclimatization, it was observed that it takes 10 days for the respiration rate of the mussel P. perna to stabilize in laboratory conditions, after which it follows a routine metabolism.


2007 ◽  
Vol 50 (3) ◽  
pp. 543-556 ◽  
Author(s):  
Charrid Resgalla Jr. ◽  
Elisângela de Souza Brasil ◽  
Luis Carlos Salomão

The aim of this work was to study the rates of respiration, clearance, excretion and absorption efficiency at different temperature and salinity under laboratory conditions for Perna perna. Results showed variations in physiological rates and in acclimatization capacity which, taken together, enabled to understand its behavior in the environment, as well as to estimate its scope for growth. All experiments were carried out in static conditions, in ten replicas with one mussel by flasks. Perna perna was capable of achieving acclimatization for both clearance and absorption efficiency (15 to 30 ºC), but it achieved only partial acclimatization for respiration and excretion under chronic temperature conditions. The clearance and respiration rates increased twofold as the mussel was submitted to temperature shock, which signified a response to metabolism activity. Acclimatization to salinity was clearly the best developed capability (20 to 40 ‰). Net growth efficiency reduced as the temperature increased, but remained constant in the 20 to 35 ‰ salinity range.


Sign in / Sign up

Export Citation Format

Share Document