scholarly journals Factorization method for a boundary value problem for a linear system of differential equations

1968 ◽  
Vol 13 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Jiří Taufer
2020 ◽  
Vol 17 (1) ◽  
pp. 41-57
Author(s):  
Olga Nesmelova

We consider the boundary-value problem for a linear system of differential equations with matrix p-Laplacian, which is reduced to the traditional differential-algebraic system with an unknown in the form of the vector function. A generalization of various boundary-value problems for differential equations with p-Laplacian, which preserves the features of the solution of such problems, namely, the lack of uniqueness of the solution and, in this case, the dependence of the desired solution on an arbitrary function, is given.


2021 ◽  
pp. 137-145
Author(s):  
A. Kravtsov ◽  
◽  
D. Levkin ◽  
O. Makarov ◽  
◽  
...  

The article presents the theoretical and methodological principles for forecasting and mathematical modeling of possible risks in technological and biotechnological systems. The authors investigated in details the possible approach to the calculation of the goal function and its parameters. Considerable attention is paid to substantiating the correctness of boundary value problems and Cauchy problems. In mechanics, engineering, and biology, Cauchy problems and boundary value problems of differential equations are used to model physical processes. It is important that differential equations have a single physically sound solution. The authors of this article investigate the specific features of boundary value problems and Cauchy problems with boundary conditions in a two-point medium, and determine the conditions for the correctness of such problems in the spaces of power growth functions. The theory of pseudo-differential operators in the space of generalized functions was used to prove the correctness of boundary value problems. The application of the obtained results will make it possible to guarantee the correctness of mathematical models built in conditions of uncertainty and possible risks. As an example of a computational mathematical model that describes the state of the studied object of non-standard shape, the authors considered the boundary value problem of the system of differential equations of thermal conductivity for the embryo under the action of a laser beam. For such a boundary value problem, it is impossible to guarantee the existence and uniqueness of the solution of the system of differential equations. To be sure of the existence of a single solution, it is necessary either not to take into account the three-layer structure of the microbiological object, or to determine the conditions for the correctness of the boundary value problem. Applying the results obtained by the authors, the correctness of the boundary value problem of systems of differential equations of thermal conductivity for the embryo is proved taking into account the three-layer structure of the microbiological object. This makes it possible to increase the accuracy and speed of its implementation on the computer. Key words: forecasting, risk, correctness, boundary value problems, conditions of uncertainty


1949 ◽  
Vol 1 (4) ◽  
pp. 379-396 ◽  
Author(s):  
G. F. D. Duff

The eigenfunctions of a boundary value problem are characterized by two quite distinct properties. They are solutions of ordinary differential equations, and they satisfy prescribed boundary conditions. It is a definite advantage to combine these two requirements into a single problem expressed by a unified formula. The use of integral equations is an example in point. The subject of this paper, namely the Schrödinger-Infeld Factorization Method, which is applicable to certain restricted. Sturm-Liouville problems, is based upon another combination of the two properties. The Factorization Method prescribes a manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document