scholarly journals Urban Adaptation to Climate Change: geographers and wicked problems

Author(s):  
Andrew Kirby

 This paper explores the importance of adaptation to climate change impacts in urban areas. The complexity of existing and likely impacts poses unique challenges to all aspects of society, from state to polity and economy. These in turn pose methodological challenges to academic practice, demanding the integration of macro and micro perspectives and pure and applied research. The paper argues that geographers can make significant contributions to this scholarship. 

2021 ◽  
Vol 1203 (2) ◽  
pp. 022049
Author(s):  
Alina Pancewicz

Abstract Increasing climate change affects many aspects of cities and their inhabitants. Extreme weather phenomena destroy urban areas, infrastructure and green spaces. Activities taken to improve the resilience of cities and their adaptation to climate change aim to reduce or avoid negative consequences, or to increase the benefits of risks. They are different in character and take different forms, depending on the level of economic and social development, financial, institutional, human, and knowledge resources. The planning and urban development tools and instruments used are also important. An integral part of adaptation activities is the development of modern systems of blue-green urban infrastructure. The experience of the last few years has shown the diversity of applied projects based on natural solutions. They are reflected both in the provisions of climate strategies and in the realizations visible in the urban landscape. The paper focuses on planning and implementation activities that strengthen resilience to climate change, highlight the importance of ecosystem services and shape urban space. The research focuses on polish cities that have undertaken the development of Urban Adaptation Plans (MPA). The aim of this paper is to present the blue-green infrastructure activities included in the MPA, the possibilities for their implementation and to show their role in improving the quality of life in cities, increasing the attractiveness of urban spaces and raising the awareness and involvement of local communities.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


2021 ◽  
Author(s):  
Musa Yusuf Jimoh ◽  
Peter Bikam ◽  
Hector Chikoore ◽  
James Chakwizira ◽  
Emaculate Ingwani

New climate change realities are no longer a doubtful phenomenon, but realities to adapt and live with. Its cogent impacts and implications’ dispositions pervade all sectors and geographic scales, making no sector or geographic area immune, nor any human endeavor spared from the associated adversities. The consequences of this emerging climate order are already manifesting, with narratives written beyond the alterations in temperature and precipitation, particularly in urban areas of semi-arid region of South Africa. The need to better understand and respond to the new climate change realities is particularly acute in this region. Thus, this chapter highlights the concept of adaptation as a fundamental component of managing climate change vulnerability, through identifying and providing insight in respect of some available climate change adaptation models and how these models fit within the premises and programmes of sustainable adaptation in semi-arid region with gaps identification. The efforts of governments within the global context are examined with households’ individual adaptation strategies to climate change hazards in Mopani District. The factors hindering the success of sustainable urban climate change adaptation strategic framework and urban households’ adaptive systems are also subjects of debate and constitute the concluding remarks to the chapter.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 305 ◽  
Author(s):  
Elena Sesana ◽  
Alexandre Gagnon ◽  
Chiara Bertolin ◽  
John Hughes

Changes in rainfall patterns, humidity, and temperature, as well as greater exposure to severe weather events, has led to the need for adapting cultural heritage to climate change. However, there is limited research accomplished to date on the process of adaptation of cultural heritage to climate change. This paper examines the perceptions of experts involved in the management and preservation of cultural heritage on adaptation to climate change risks. For this purpose, semi-structured interviews were conducted with experts from the UK, Italy, and Norway as well as a participatory workshop with stakeholders. The results indicate that the majority of interviewees believe that adaptation of cultural heritage to climate change is possible. Opportunities for, barriers to, and requirements for adapting cultural heritage to climate change, as perceived by the interviewees, provided a better understanding of what needs to be provided and prioritized for adaptation to take place and in its strategic planning. Knowledge of management methodologies incorporating climate change impacts by the interviewees together with best practice examples in adapting cultural heritage to climate change are also reported. Finally, the interviewees identified the determinant factors for the implementation of climate change adaptation. This paper highlights the need for more research on this topic and the identification and dissemination of practical solutions and tools for the incorporation of climate change adaptation in the preservation and management of cultural heritage.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


Sign in / Sign up

Export Citation Format

Share Document