An Empirical Saturation Modeling of a Complex Carbonate Abu Dhabi Reservoir Using the Routine High Pressure Mercury and Oil/Water Capillary Pressure Data

2007 ◽  
Author(s):  
Mahmoud Basioni ◽  
Shahin Negahban ◽  
Ahmed Mohamed Dawoud ◽  
Ahmed El Mahdi ◽  
Jamal Nasir Bahamaish
2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Dong Ma ◽  
Changwei Liu ◽  
Changhui Cheng

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.


1983 ◽  
Vol 23 (05) ◽  
pp. 791-803 ◽  
Author(s):  
C. Stanley McCool ◽  
Ravi Parmeswar ◽  
G. Paul Willhite

Abstract Experimental data were obtained for two surfactant/polymer systems in which fluid mobilities and mobility control were studied through the analysis of differential pressure measurements. One system used nonane as the hydrocarbon phase, while the other system used crude oil from the Madison field, Greenwood County, KS. During the experimental studies, capillary-pressure effects were observed in differential pressure data when floods were conducted at reservoir rates and small port spacing. Capillary-pressure effects interfered with the measurement of the "true" or viscous pressure drop in oil/water banks and the transition region between the oil/water bank and surfactant slug. Pressure ports were designed to permit injection of small quantities of fluid at the rock surface during permit injection of small quantities of fluid at the rock surface during displacements to verify and to eliminate capillary-pressure effects. Movement of fluid regions through the core was inferred from the differential pressure measurements along the core. Similar pressure perturbations at the ports were extrapolated to the end of the core and perturbations at the ports were extrapolated to the end of the core and correlated with effluent fractions. In the nonane system, the microemulsion surfactant slug changed to a more mobile macroemulsion within the first half of the displacement. This macroemulsion moved through the last half of the core as a stabilized, constant velocity bank indicating good mobility control even though the apparent viscosity of the macroemulsion was less than that of the stabilized oil/water bank. In the crude-oil surfactant system, pressure data collected along the core indicated capillary-pressure effects at the leading edge of the oil bank and the formation of a viscous, less mobile region resulting from mixing of the microemulsion slug with resident fluids. Phase-behavior studies indicated the formation of a viscous lower phase as the microemulsion was diluted with brine. The formation and propagation of this viscous region during displacement leads to favorable mobility control illustrated by the pressure/mobility curves as well as by good oil recoveries (80 to 95%). pressure/mobility curves as well as by good oil recoveries (80 to 95%). Introduction Mobility control is a necessary requirement for an effective surfactant flood. Mobility control is achieved when the displacing fluids' mobilities are less than or equal to the displaced fluids' mobilities. In a typical surfactant/polymer flood, the mobility of the stabilized oil/water bank must be greater than the surfactant slug's mobility, which in turn must be greater than the mobility of the trailing polymer bank. When these criteria are met, mixing between the different fluid banks will be minimized. This allows the surfactant slug to move as a stabilized bank, contacting a larger percentage of the reservoir. A procedure for selecting the mobility for the surfactant slug and polymer bank was presented by Gogarty et al. They obtain a design mobility polymer bank was presented by Gogarty et al. They obtain a design mobility of the stabilized oil/water bank generated ahead of a surfactant slug from one of the following two methods. 1. Total relative mobilities as a function of water saturations are calculated from relative-permeability curves. The minimum total mobility is selected as a safe value of the design mobility. Chang et al., pointed out that decreasing water-saturation (drainage for water-wet rocks) curves should be used. SPEJ p. 791


1967 ◽  
Vol 89 (3) ◽  
pp. 554-560 ◽  
Author(s):  
A. A. Giardini

Significant sources of error independent of the apparatus are analyzed on the basis of experimental experience and elastic theory. All are mechanical in nature and subject to corrective action. The most serious is found to be self-generating internal pressure differences which result from differential elastic and dimensional values in multicomponent assemblies. High-pressure data on elastic constants, relative critical yield stresses, radial displacements, and ratios of external to internal pressure for various compositional arrangements of pyrophyllite, MgO, NaCl, and AgCl are given in graphical form. Observance of suggested corrective measures can render the inductive coil technique capable of operational accuracies of 2 percent or better in compressibility and resistivity measurements.


2011 ◽  
Vol 82 (5) ◽  
pp. 055111 ◽  
Author(s):  
Benedetta Periotto ◽  
Fabrizio Nestola ◽  
Tonci Balic-Zunic ◽  
Ross J. Angel ◽  
Ronald Miletich ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 95-113
Author(s):  
Wisam I. Al-Rubaye ◽  
Dhiaa S. Ghanem ◽  
Hussein Mohammed Kh ◽  
Hayder Abdulzahra ◽  
Ali M. Saleem ◽  
...  

In petroleum industry, an accurate description and estimation of the Oil-Water Contact(OWC) is very important in quantifying the resources (i.e. original oil in place (OIIP)), andoptimizing production techniques, rates and overall management of the reservoir. Thus,OWC accurate estimation is crucial step for optimum reservoir characterization andexploration. This paper presents a comparison of three different methods (i.e. open holewell logging, MDT test and capillary pressure drainage data) to determine the oil watercontact of a carbonate reservoir (Main Mishrif) in an Iraqi oil field "BG”. A total of threewells from "BG" oil field were evaluated by using interactive petrophysics software "IPv3.6". The results show that using the well logging interpretations leads to predict OWCdepth of -3881 mssl. However, it shows variance in the estimated depth (WELL X; -3939,WELL Y; -3844, WELL Z; -3860) mssl, which is considered as an acceptable variationrange due to the fact that OWC height level in reality is not constant and its elevation isusually changed laterally due to the complicated heterogeneity nature of the reservoirs.Furthermore, the results indicate that the MDT test can predict a depth of OWC at -3889mssl, while the capillary drainage data results in a OWC depth of -3879 mssl. The properMDT data and SCAL data are necessary to reduce the uncertainty in the estimationprocess. Accordingly, the best approach for estimating OWC is the combination of MDTand capillary pressure due to the field data obtained are more reliable than open hole welllogs with many measurement uncertainties due to the fact of frequent borehole conditions.


Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050055
Author(s):  
HAIBO SU ◽  
SHIMING ZHANG ◽  
YEHENG SUN ◽  
XIAOHONG WANG ◽  
BOMING YU ◽  
...  

Oil–water relative permeability curve is an important parameter for analyzing the characters of oil and water seepages in low-permeability reservoirs. The fluid flow in low-permeability reservoirs exhibits distinct nonlinear seepage characteristics with starting pressure gradient. However, the existing theoretical model of oil–water relative permeability only considered few nonlinear seepage characteristics such as capillary pressure and fluid properties. Studying the influences of reservoir pore structures, capillary pressure, driving pressure and boundary layer effect on the morphology of relative permeability curves is of great significance for understanding the seepage properties of low-permeability reservoirs. Based on the fractal theory for porous media, an analytically comprehensive model for the relative permeabilities of oil and water in a low-permeability reservoir is established in this work. The analytical model for oil–water relative permeabilities obtained in this paper is found to be a function of water saturation, fractal dimension for pores, fractal dimension for tortuosity of capillaries, driving pressure gradient and capillary pressure between oil and water phases as well as boundary layer thickness. The present results show that the relative permeabilities of oil and water decrease with the increase of the fractal dimension for tortuosity, whereas the relative permeabilities of oil and water increase with the increase of pore fractal dimension. The nonlinear properties of low-permeability reservoirs have the prominent significances on the relative permeability of the oil phase. With the increase of the seepage resistance coefficient, the relative permeability of oil phase decreases. The proposed theoretical model has been verified by experimental data on oil–water relative permeability and compared with other conventional oil–water relative permeability models. The present results verify the reliability of the oil–water relative permeability model established in this paper.


Sign in / Sign up

Export Citation Format

Share Document