An Early-Time Model for Drawdown Testing of a Hydrate-Capped Gas Reservoir

2009 ◽  
Vol 12 (04) ◽  
pp. 595-609 ◽  
Author(s):  
Shahab Gerami ◽  
Mehran Pooladi-Darvish

Summary Development of natural gas hydrates as an energy resource has gained significant interest during the past decade. Hydrate reservoirs may be found in different geologic settings including deep ocean sediments and arctic areas. Some reservoirs include a free-gas zone beneath the hydrate and such a situation is referred to as a hydrate-capped gas reservoir. Gas production from such a reservoir could result in pressure reduction in the hydrate cap and endothermic decomposition of hydrates. Well testing in conventional reservoirs is used for estimation of reservoir and near-wellbore properties. Drawdown testing in a hydrate-capped gas reservoir needs to account for the effect of gas from decomposing hydrates. This paper presents a 2D (r,z) mathematical model for a constant-rate drawdown test performed in a well completed in the free-gas zone of a hydrate-capped gas reservoir during the earlytime production. Using energy and material balance equations, the effect of endothermic hydrate decomposition appears as an increased compressibility in the resulting governing equation. The solution for the dimensionless wellbore pressure is derived using Laplace and finite Fourier cosine transforms. The solution to the analytical model was compared with a numerical hydrate reservoir simulator across some range of hydrate reservoir parameters. The use of this solution for determination of reservoir properties is demonstrated using a synthetic example. Furthermore, the solution may be used to quantify the contribution of hydrate decomposition on production performance. Introduction In recent years, demands for energy have stimulated the development of unconventional gas resources, which are available in enormous quantities around the world. Gas hydrate as an unconventional gas resource may be found in two geologic settings (Sloan 1991):on land in permafrost regions, andin the ocean sediments of continental margins. During the last decade, extensive efforts consisting of detection of the hydrate-bearing areas, drilling, logging, coring of the intervals, production pilot-testing, and mathematical modeling of hydrate reservoirs have been pursued to evaluate the potential of gas production from these gas-hydrate resources.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7513
Author(s):  
Shilong Shang ◽  
Lijuan Gu ◽  
Hailong Lu

Natural gas hydrate is considered as a potential energy resource. To develop technologies for the exploitation of natural gas hydrate, several field gas production tests have been carried out in permafrost and continental slope sediments. However, the gas production rates in these tests were still limited, and the low permeability of the hydrate-bearing sediments is identified as one of the crucial factors. Artificial fracturing is proposed to promote gas production rate by improving reservoir permeability. In this research, numerical studies about the effect of fracture length and fluid conductivity on production performance were carried out on an artificially fractured Class 3 hydrate reservoir (where the single hydrate zone is surrounded by an overlaying and underlying hydrate-free zone), in which the equivalent conductivity method was applied to depict the artificial fracture. The results show that artificial fracture can enhance gas production by offering an extra fluid flow channel for the migration of gas released from hydrate dissociation. The effect of fracture length on production is closely related to the time frame of production, and gas production improvement by enlarging the fracture length is observed after a certain production duration. Through the production process, secondary hydrate formation is absent in the fracture, and the high conductivity in the fracture is maintained. The results indicate that the increase in fracture conductivity has a limited effect on enhancing gas production.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Xin Xin ◽  
Yingli Xia

Gas hydrates are expected to be a potential energy resource with extensive distribution in the permafrost and in deep ocean sediments. The marine gas hydrate drilling explorations at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate deposits. Gas hydrate reservoirs are composed of alternating beds of sand and clay, with various conditions of permeability, porosity, and hydrate saturation. This study looks into the multiphase flow behaviors of layered methane hydrate reservoirs induced by gas production. Firstly, a history matching model by incorporating the available geological data at the test site of the Eastern Nankai Trough, which considers the layered heterogeneous structure of hydrate saturation, permeability, and porosity simultaneously, was constructed to investigate the production characteristics from layered hydrate reservoirs. Based on the validated model, the effects of the placement of production interval on production performance were investigated. The modeling results indicate that the dissociation zone is strongly affected by the vertical reservoir’s heterogeneous structure and shows a unique dissociation front. The beneficial production interval scheme should consider the reservoir conditions with high permeability and high hydrate saturation. Consequently, the identification of the favorable hydrate deposits is significantly important to realize commercial production in the future.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Yingli Xia ◽  
Tianfu Xu ◽  
Yilong Yuan ◽  
Xin Xin ◽  
Huixing Zhu

Summary Natural gas hydrate (NGH) is regarded as an important alternative future energy resource. In recent years, a few short-term production tests have been successfully conducted with both permafrost and marine sediments. However, long-term hydrate production performance and the potential geomechanical problems are not very clear. According to the available geological data at the Mallik site, a more realistic hydrate reservoir model that considers the heterogeneity of porosity, permeability, and hydrate saturation was developed and validated by reproducing the field depressurization test. The coupled multiphase and heat flow and geomechanical response induced by depressurization were fully investigated for long-term gas production from the validated hydrate reservoir model. The results indicate that long-term gas production through depressurization from a vertically heterogeneous hydrate reservoir is technically feasible, but the production efficiency is generally modest, with the low average gas production rate of 4.93 × 103 ST m3/d (ST represents the standard conditions) over a 1-year period. The hydrate dissociation region is significantly affected by the reservoir heterogeneity and reveals a heterogeneous dissociation front in the reservoir. The depressurization production results in significant increase of shear stress and vertical compaction in the hydrate reservoir. The response of shear stress indicates that the potential region of sand migration is mainly in the sand-dominant layer during gas production from the hydraulically heterogeneous hydrate reservoir (e.g., sand layers interbedded with clay layers). The maximum subsidence is approximately 78 mm and occurred at the 72nd day, whereas the final subsidence is slowly dropped to 63 mm after 1-year of depressurization production. The vertical subsidence is greatly dependent on the elastic properties and the permeability anisotropy. In particular, the maximum subsidence increased by approximately 81% when the ratio of permeability anisotropy was set at 5:1. Furthermore, the potential shear failure in the hydrate reservoir is strongly correlated to the in-situ stress state. For the normal fault stress regime, the greater the initial horizontal stress is, the less likely the hydrate reservoir is to undergo shear failure during depressurization production.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 563-578 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Xin Xin

Summary Marine-gas-hydrate-drilling exploration at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate accumulations, which are composed of alternating beds of sand, silt, and clay in sediments, with vertically varying porosity, permeability, and hydrate saturation. The main purposes of this work are to evaluate gas productivity and identify the multiphase-flow behavior from the sedimentary-complex hydrate reservoir by depressurization through a conventional vertical well. We first established a history-matching model by incorporating the available geological data at the offshore-production test site in the Eastern Nankai Trough. The reservoir model was validated by matching the fluid-flow rates at a production well and temperature changes at a monitoring well during a field test. The modeling results indicate that the hydrate-dissociation zone is strongly affected by the reservoir heterogeneity and shows a unique dissociation front. The gas-production rate is expected to increase with time and reach the considerable value of 3.6 × 104 std m3/d as a result of the significant expansion of the dissociation zone. The numerical model, using a simplified description of porosity, permeability, and hydrate saturation, leads to significant underestimation of gas productivity from the sedimentary-complex hydrate reservoir. The results also suggest that the interbedded-hydrate-occurrence systems might be a better candidate for methane (CH4) gas extraction than the massive hydrate reservoirs.


2009 ◽  
Vol 54 (5) ◽  
pp. 865-872 ◽  
Author(s):  
YuHu Bai ◽  
QingPing Li ◽  
XiangFang Li ◽  
Yan Du

Sign in / Sign up

Export Citation Format

Share Document