Key Aspects of Project Design for Polymer Flooding at the Daqing Oilfield

2008 ◽  
Vol 11 (06) ◽  
pp. 1117-1124 ◽  
Author(s):  
Dongmei Wang ◽  
Randall S. Seright ◽  
Zhenbo Shao ◽  
Jinmei Wang

Summary This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field. Special emphasis is placed on some new design factors that were found to be important on the basis of extensive experience with polymer flooding. These factors include (1) recognizing when profile modification is needed before polymer injection and when zone isolation is of value during polymer injection, (2) establishing the optimum polymer formulations and injection rates, and (3) time-dependent variation of the molecular weight of the polymer used in the injected slugs. For some Daqing wells, oil recovery can be enhanced by 2 to 4% of original oil in place (OOIP) with profile modification before polymer injection. For some Daqing wells with significant permeability differential between layers and no crossflow, injecting polymer solutions separately into different layers improved flow profiles, reservoir sweep efficiency, and injection rates, and it reduced the water cut in production wells. Experience over time revealed that larger polymer-bank sizes are preferred. Bank sizes grew from 240-380 mg/L·PV during the initial pilots to 640 to 700 mg/L·PV in the most recent large-scale industrial sites [pore volume (PV)]. Economics and injectivity behavior can favor changing the polymer molecular weight and polymer concentration during the course of injecting the polymer slug. Polymers with molecular weights from 12 to 35 million Daltons were designed and supplied to meet the requirements for different reservoir geological conditions. The optimum polymer-injection volume varied around 0.7 PV, depending on the water cut in the different flooding units. The average polymer concentration was designed approximately 1000 mg/L, but for an individual injection station, it could be 2000 mg/L or more. At Daqing, the injection rates should be less than 0.14-0.20 PV/year, depending on well spacing. Introduction Many elements have long been recognized as important during the design of a polymer flood (Li and Niu 2002; Jewett and Schurz 1970; Sorbie 1991; Vela et al. 1976; Taber et al. 1997; Maitin 1992; Koning et al. 1988; Wang et al. 1995; Wang and Qian 2002; Wang et al. 2008). This paper spells out some of those elements, using examples from the Daqing oil field. The Daqing oil field is located in northeast China and is a large river-delta/lacustrine-facies, multilayer, heterogeneous sandstone in an inland basin. The reservoir is buried at a depth of approximately 1000 m, with a temperature of 45°C. The main formation under polymer flood (i.e., the Saertu formation) has a net thickness ranging from from 2.3 to 11.6 m with an average of 6.1 m. The average air permeability is 1.1 µm2, and the Dykstra-Parsons permeability coefficient averages 0.7. Oil viscosity at reservoir temperature averages approximately 9 mPa·s, and the total salinity of the formation water varies from 3000 to 7000 mg/L. The field was discovered in 1959, and a waterflood was initiated in 1960. The world's largest polymer flood was implemented at Daqing, beginning in December 1995. By 2007, 22.3% of total production from the Daqing oil field was attributed to polymer flooding. Polymer flooding should boost the ultimate recovery for the field to more than 50% OOIP--10 to 12% OOIP more than from waterflooding. At the end of 2007, oil production from polymer flooding at the Daqing oil field was more than 11.6 million m3 (73 million bbl) per year (sustained for 6 years). The polymers used at Daqing are high-molecular-weight partially hydrolyzed polyacrylamides (HPAMs). During design of a polymer flood, critical reservoir factors that traditionally receive consideration are the reservoir lithology, stratigraphy, important heterogeneities (such as fractures), distribution of remaining oil, well pattern, and well distance. Critical polymer properties include cost-effectiveness (e.g., cost per unit of viscosity), resistance to degradation (mechanical or shear, oxidative, thermal, microbial), tolerance of reservoir salinity and hardness, retention by rock, inaccessible pore volume, permeability dependence of performance, rheology, and compatibility with other chemicals that might be used. Issues long recognized as important for polymer-bank design include bank size (volume), polymer concentration and salinity (affecting bank viscosity and mobility), and whether (and how) to grade polymer concentrations in the chase water. This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field.

2009 ◽  
Vol 12 (03) ◽  
pp. 470-476 ◽  
Author(s):  
Dongmei Wang ◽  
Huanzhong Dong ◽  
Changsen Lv ◽  
Xiaofei Fu ◽  
Jun Nie

Summary This paper describes successful practices applied during polymer flooding at Daqing that will be of considerable value to future chemical floods, both in China and elsewhere. On the basis of laboratory findings, new concepts have been developed that expand conventional ideas concerning favorable conditions for mobility improvement by polymer flooding. Particular advances integrate reservoir-engineering approaches and technology that is basic for successful application of polymer flooding. These include the following:Proper consideration must be given to the permeability contrast among the oil zones and to interwell continuity, involving the optimum combination of oil strata during flooding and well-pattern design, respectively;Higher polymer molecular weights, a broader range of polymer molecular weights, and higher polymer concentrations are desirable in the injected slugs;The entire polymer-flooding process should be characterized in five stages--with its dynamic behavior distinguished by water-cut changes; -Additional techniques should be considered, such as dynamic monitoring using well logging, well testing, and tracers; effective techniques are also needed for surface mixing, injection facilities, oil production, and produced-water treatment; andContinuous innovation must be a priority during polymer flooding. Introduction China's Daqing oil field entered its ultrahigh-water-cut period after 30 years of exploitation. Just before large-scale polymer-flooding application, the average water-cut was more than 90%. The Daqing oil-field is a large river-delta/lacustrine facies, multilayered with complex geologic conditions and heterogeneous sandstone in an inland basin. After 30 years of waterflooding, many channels and high-permeability streaks were identified in this oil field (Wang and Qian 2002). Laboratory research began in the 1960s, investigating the potential of enhanced-oil-recovery (EOR) processes in the Daqing oil field. After a single-injector polymer flood with a small well spacing of 75 m in 1972, polymer flooding was set on pilot test. During the late 1980s, a pilot project in central Daqing was expanded to a multiwell pattern with larger well spacing. Favorable results from these tests--along with extensive research and engineering from the mid-1980s through the 1990s--confirmed that polymer flooding was the preferred method to improve areal- and vertical-sweep efficiency at Daqing and to provide mobility control (Wang et al. 2002, Wang and Liu 2004). Consequently, the world's largest polymer flood was implemented at Daqing, beginning in 1996. By 2007, 22.3% of total production from the Daqing oil field was attributed to polymer flooding. Polymer flooding boosted the ultimate recovery for the field to more than 50% of original oil in place (OOIP)--10 to 12% OOIP more than from waterflooding. At the end of 2007, oil production from polymer flooding at the Daqing oil field was more than 10 million tons (73 million bbl) per year (sustained for 6 years). The focus of this paper is on polymer flooding, in which sweep efficiency is improved by reducing the water/oil mobility ratio in the reservoir. This paper is not concerned with the use of chemical gel treatments, which attempt to block water flow through fractures and high-permeability strata. Applications of chemical gel treatments in China have been covered elsewhere (Liu et al. 2006).


2014 ◽  
Vol 18 (01) ◽  
pp. 11-19 ◽  
Author(s):  
J.. Buciak ◽  
G.. Fondevila Sancet ◽  
L.. Del Pozo

Summary This paper deals with the learning curve of a five-plus-year polymer-flooding pilot conducted in a mature waterflood that includes, for example, several works related to injector and producer wells and reservoir management. The scope of this paper is to describe the learning curve during the last 5 years rather than the reservoir response of the polymer-flooding technique; focus is on the aspects related to reduce cost per incremental barrel of oil for a possible extension to other waterflooded areas of the field. Diadema oil field is in the San Jorge Gulf basin in the southern portion of Argentina. The field is operated by CAPSA, an Argentinean oil-producer company; it has 480 producer and 270 injector wells (interwell spacing is 250 m on average). The company has developed waterflooding over more than 18 years (today, this technique represents 82% of oil production in the field) and produces approximately 1600 m3/d of oil and 40 000 m3/d of gross production (96% water cut) with 38 400 m3/d of water injection. The reservoir that is polymer-flooded is characterized by high permeability (average of 500 md), high heterogeneity (10 to 5,000 md), high porosity (30%), very stratified sandstone layers (4 to 12 m of net thickness) with poor lateral continuity (fluvial origin), and 20 °API oil (100 cp at reservoir conditions). Diadema's polymer-flooding pilot started in October 2007 on five water injectors (it includes 13 injectors today) with an injected rate of 1000 m3/d (today, 2000 m3/d). Polymer solution is made with produced water (15,000 ppm brine) and 1,500 ppm of hydrolyzed polyacrylamide polymer reaching 15- to 20-cp fluid-injection viscosity. Oil-production rate from the original “central” producers (wells that are aided with 100% of polymer injection) has increased 100% at the same time as average reduction in water cut is approximately 15%. The main aspects presented in this work are depth profile modification with crosslinked gel injected along with polymer, use of “curlers” to regulate injection in multiple wells with one injection pump without shearing the polymer, and an improved technology on producer wells with progressing-cavity pumps to decrease shut-in time and number of pump failures. The plan for the future is to extend this project to other areas with the acquired knowledge and to improve different aspects, such as water quality and optimization of polymer plant operation. These improvements will allow the company to reduce operating costs per incremental barrel of oil.


1975 ◽  
Vol 15 (04) ◽  
pp. 338-346 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous polymer floods were performed in unconsolidated sand packs using a C14-tagged, cross-linked, partially hydrolyzed ployacrylamide, and the data are compared with brine-flood performance in the same sands. performance in the same sands. The amount of "polymer oil" was linearly proportional to polymer concentration up to a proportional to polymer concentration up to a limiting value. The upper limit of polymer concentration yielding additional polymer oil was considerably higher for a high-permeability sand than for a low-permeability sand. It is shown that a minimum polymer concentration exists, below which no appreciable polymer oil can be produced in high-permeability sands. The effect of polymer slug size on oil recovery is shown for various polymer concentrations, and the results from these tests are used to determine the optimum slug size and polymer concentration for different sands. The effect of salinity was studied by using brine and tap water during polymer floods under similar conditions. Decreased salinity resulted in improved oil recovery at low, polymer concentrations, but it had little effect at higher polymer concentrations. Polymer injection that was started at an advanced stage of brine flood also improved the oil recovery in single-layered sand packs. Experimental data are presented showing the effect of polymer concentration and salinity on polymer-flood performance in stratified reservoir polymer-flood performance in stratified reservoir models. Polymer concentrations in the produced water were measured by analyzing the radioactivity of effluent samples, and the amounts of retained polymer in the stratified models are given for each polymer in the stratified models are given for each experiment. Introduction In the early 1960's, a new technique using dilute polymer solutions to increase oil recovery was polymer solutions to increase oil recovery was introduced in secondary oil-recovery operations. Since then, this new technique has attained wide-spread commercial application. The success and the complexity of this new technology has induced many authors to investigate many aspects of this flooding technique. Laboratory and field studies, along with numerical simulation of polymer flooding, clearly demonstrated that polymer additives increase oil recovery. polymer additives increase oil recovery. Some of the laboratory results have shown that applying polymers in waterflooding reduces the residual oil saturation through an improvement in microscopic sweep efficiency. Other laboratory studies have shown that applying polymer solutions improves the sweep efficiency in polymer solutions improves the sweep efficiency in heterogeneous systems. Numerical simulation of polymer flooding, and a summary of 56 field applications, clearly showed that polymer injection initiated at an early stage of waterflooding is more efficient than when initiated at an advanced stage. Although much useful information has been presented, the experimental conditions were so presented, the experimental conditions were so variable that difficulties arose in correlating the numerical data. So, despite this good data, a systematic laboratory study of the factors influencing the performance of polymer flooding was still lacking in the literature. The purpose of this study was to investigate the effect of polymer concentration, polymer slug size, salinity in the polymer bank, initial water saturation, and permeability on the performance of polymer floods. The role of oil viscosity did not constitute a subject of this investigation. However, some of the data indicated that the applied polymer resulted in added recovery when displacing more viscous oil. The linear polymer-flood tests were coupled with tests in stratified systems, consisting of the same sand materials used in linear flood tests. Thus, it was possible to differentiate between the role of polymer in mobility control behind the flood front in each layer and its role in mobility control in the entire stratified system through improvement in vertical sweep efficiency. A radioactive, C14-tagged hydrolyzed polyacrylamide was used in all oil-recovery tests. polyacrylamide was used in all oil-recovery tests. SPEJ P. 338


2021 ◽  
Author(s):  
Aditya Kumar Singh ◽  
Pruthvi Raju Vegesna ◽  
Dhruva Prasad ◽  
Saideep Chandrashekar Kachodi ◽  
Sumit Lohiya ◽  
...  

Abstract The Aishwariya Oil Field located in Barmer Basin of Rajasthan India having STOIIP of ∼300 MMBBLS was initially developed with down-dip edge water injection. The main reservoir unit, Fatehgarh Formation, has excellent reservoir characteristics with porosities of 20-30% and permeability of 1 to 5 Darcys. The Fatehgarh Formation is subdivided into Lower Fatehgarh (LF) and Upper Fatehgarh (UF) Formations, of which LF sands are more homogenous and have slightly better reservoir properties. The oil has in-situ viscosity of 10-30 cP. Given its adverse waterflood mobility ratio, the importance of EOR was recognised very early. Initial screening studies identified that chemical EOR (polymer and ASP) was preferred choice of EOR process. Extensive lab studies and simulation work was conducted to develop the polymer flood concept. A polymer flood development plan was prepared targeting the LF sands of the field utilizing the lessons learnt from nearby Mangala Field polymer implementation project. The polymer flood in Aishwariya Field was implemented in two stages. In the first stage, a polymer injectivity test was conducted in 3 wells to establish the potential for polymer injection in these wells. The injection was extended to 3 more wells and continued for ∼4 years. Significant water cut drop was observed in nearby wells during this phase of polymer injection. In the next stage, polymer flooding was extended to the entire LF sands with drilling of 14 new infill wells and conversion of 8 existing wells to polymer injectors. A ∼14 km long pipeline was laid from the Mangala Central Polymer Facility to well pads in the field to cater to the requirement of 6-8 KBPD of ∼15000 ppm polymer mother solution. The philosophy of pre-production for extended periods was considered prior to start of polymer injection for all wells as it significantly improved injection (reduced skin) and conformance. Full field polymer flood project was implemented, and injection was ramped up to the planned 40-50 KBPD of polymerized water within a month owing to good injectivity and polymer solution quality. A detailed laboratory, well and reservoir surveillance program has been implemented and the desired wellhead viscosity of 25-30 cP has been achieved. Initial response shows significant increase in oil production rate and decrease in water-cut. This paper presents the polymer laboratory studies, initial long term injectivity test results, polymer flood development concept and planning, simulation studies and field implementation in LF Formation in Aishwariya Field.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


1999 ◽  
Author(s):  
Wang Demin ◽  
Cheng Jiecheng ◽  
Li Qun ◽  
Li Lizhong ◽  
Zhao Changjiu

2008 ◽  
Author(s):  
He Liu ◽  
Pei Xiaohan ◽  
Peng Baiqi ◽  
Hou Yu ◽  
Wang Yumei ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Jia Zhichun ◽  
Li Daolun ◽  
Yang Jinghai ◽  
Xue Zhenggang ◽  
Lu Detang

Well test analysis for polymer flooding is different from traditional well test analysis because of the non-Newtonian properties of underground flow and other mechanisms involved in polymer flooding. Few of the present works have proposed a numerical approach of pressure transient analysis which fully considers the non-Newtonian effect of real polymer solution and interprets the polymer rheology from details of pressure transient response. In this study, a two-phase four-component fully implicit numerical model incorporating shear thinning effect for polymer flooding based on PEBI (Perpendicular Bisection) grid is developed to study transient pressure responses in polymer flooding reservoirs. Parametric studies are conducted to quantify the effect of shear thinning and polymer concentration on the pressure transient response. Results show that shear thinning effect leads to obvious and characteristic nonsmoothness on pressure derivative curves, and the oscillation amplitude of the shear-thinning-induced nonsmoothness is related to the viscosity change decided by shear thinning effect and polymer concentration. Practical applications are carried out with shut-in data obtained in Daqing oil field, which validates our findings. The proposed method and the findings in this paper show significant importance for well test analysis for polymer flooding and the determination of the polymer in situ rheology.


2011 ◽  
Vol 51 (2) ◽  
pp. 672
Author(s):  
Daniel León ◽  
John Scott ◽  
Steven Saul ◽  
Lina Hartanto ◽  
Shannon Gardner ◽  
...  

After successful design and implementation phases that included both subsurface and facilities components, an EOR polymer injection pilot has been operational for two years in Australia's largest onshore oil field at Barrow Island (816 MMstb OOIP). The pilot's main objective was to identify a suitable EOR technology for the complex, highly heterogeneous, very fine-grained, bioturbated argillaceous sandstone—high in glauconite, high porosity (∼23 %), low permeability (∼5 mD, with 50+ mD streaks)—reservoir that will ultimately increase the recovery of commercial resources past the estimated ultimate recovery factor with waterflooding (∼42 %). This was achieved using the in-depth flow diversion (IFD) methodology to access new unswept oil zones—both vertically and horizontally—by inducing growth in the fracture network. During the pilot operating phase, the main focus has been on surveillance and monitoring activities to assess the effectiveness of the process, including: injection pressure at the wellheads—indicating any increase in resistance to flow; pressure fall off tests at the injectors—to determine fracture growth, if any sampling and lab analysis at the producers—to identify polymer breakthrough; frequent production tests—quantifying reduction in water cut and oil production uplift; and, pressure build up surveys at the producers. These activities provided input data to the fit for purpose simulation model built in Reveal incorporating fractures and polymer as a fourth phase. With more than 96 % compliance to the surveillance plan, this paper will present the present findings and evaluation of the results, which may lead to the continuation of the pilot in other patterns of the reservoir and, possibly, to further expansion in the field.


Sign in / Sign up

Export Citation Format

Share Document