Barrow Island enhanced oil recovery polymer pilot—part two: progress and way forward

2011 ◽  
Vol 51 (2) ◽  
pp. 672
Author(s):  
Daniel León ◽  
John Scott ◽  
Steven Saul ◽  
Lina Hartanto ◽  
Shannon Gardner ◽  
...  

After successful design and implementation phases that included both subsurface and facilities components, an EOR polymer injection pilot has been operational for two years in Australia's largest onshore oil field at Barrow Island (816 MMstb OOIP). The pilot's main objective was to identify a suitable EOR technology for the complex, highly heterogeneous, very fine-grained, bioturbated argillaceous sandstone—high in glauconite, high porosity (∼23 %), low permeability (∼5 mD, with 50+ mD streaks)—reservoir that will ultimately increase the recovery of commercial resources past the estimated ultimate recovery factor with waterflooding (∼42 %). This was achieved using the in-depth flow diversion (IFD) methodology to access new unswept oil zones—both vertically and horizontally—by inducing growth in the fracture network. During the pilot operating phase, the main focus has been on surveillance and monitoring activities to assess the effectiveness of the process, including: injection pressure at the wellheads—indicating any increase in resistance to flow; pressure fall off tests at the injectors—to determine fracture growth, if any sampling and lab analysis at the producers—to identify polymer breakthrough; frequent production tests—quantifying reduction in water cut and oil production uplift; and, pressure build up surveys at the producers. These activities provided input data to the fit for purpose simulation model built in Reveal incorporating fractures and polymer as a fourth phase. With more than 96 % compliance to the surveillance plan, this paper will present the present findings and evaluation of the results, which may lead to the continuation of the pilot in other patterns of the reservoir and, possibly, to further expansion in the field.

2014 ◽  
Vol 18 (01) ◽  
pp. 11-19 ◽  
Author(s):  
J.. Buciak ◽  
G.. Fondevila Sancet ◽  
L.. Del Pozo

Summary This paper deals with the learning curve of a five-plus-year polymer-flooding pilot conducted in a mature waterflood that includes, for example, several works related to injector and producer wells and reservoir management. The scope of this paper is to describe the learning curve during the last 5 years rather than the reservoir response of the polymer-flooding technique; focus is on the aspects related to reduce cost per incremental barrel of oil for a possible extension to other waterflooded areas of the field. Diadema oil field is in the San Jorge Gulf basin in the southern portion of Argentina. The field is operated by CAPSA, an Argentinean oil-producer company; it has 480 producer and 270 injector wells (interwell spacing is 250 m on average). The company has developed waterflooding over more than 18 years (today, this technique represents 82% of oil production in the field) and produces approximately 1600 m3/d of oil and 40 000 m3/d of gross production (96% water cut) with 38 400 m3/d of water injection. The reservoir that is polymer-flooded is characterized by high permeability (average of 500 md), high heterogeneity (10 to 5,000 md), high porosity (30%), very stratified sandstone layers (4 to 12 m of net thickness) with poor lateral continuity (fluvial origin), and 20 °API oil (100 cp at reservoir conditions). Diadema's polymer-flooding pilot started in October 2007 on five water injectors (it includes 13 injectors today) with an injected rate of 1000 m3/d (today, 2000 m3/d). Polymer solution is made with produced water (15,000 ppm brine) and 1,500 ppm of hydrolyzed polyacrylamide polymer reaching 15- to 20-cp fluid-injection viscosity. Oil-production rate from the original “central” producers (wells that are aided with 100% of polymer injection) has increased 100% at the same time as average reduction in water cut is approximately 15%. The main aspects presented in this work are depth profile modification with crosslinked gel injected along with polymer, use of “curlers” to regulate injection in multiple wells with one injection pump without shearing the polymer, and an improved technology on producer wells with progressing-cavity pumps to decrease shut-in time and number of pump failures. The plan for the future is to extend this project to other areas with the acquired knowledge and to improve different aspects, such as water quality and optimization of polymer plant operation. These improvements will allow the company to reduce operating costs per incremental barrel of oil.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


2008 ◽  
Vol 11 (06) ◽  
pp. 1117-1124 ◽  
Author(s):  
Dongmei Wang ◽  
Randall S. Seright ◽  
Zhenbo Shao ◽  
Jinmei Wang

Summary This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field. Special emphasis is placed on some new design factors that were found to be important on the basis of extensive experience with polymer flooding. These factors include (1) recognizing when profile modification is needed before polymer injection and when zone isolation is of value during polymer injection, (2) establishing the optimum polymer formulations and injection rates, and (3) time-dependent variation of the molecular weight of the polymer used in the injected slugs. For some Daqing wells, oil recovery can be enhanced by 2 to 4% of original oil in place (OOIP) with profile modification before polymer injection. For some Daqing wells with significant permeability differential between layers and no crossflow, injecting polymer solutions separately into different layers improved flow profiles, reservoir sweep efficiency, and injection rates, and it reduced the water cut in production wells. Experience over time revealed that larger polymer-bank sizes are preferred. Bank sizes grew from 240-380 mg/L·PV during the initial pilots to 640 to 700 mg/L·PV in the most recent large-scale industrial sites [pore volume (PV)]. Economics and injectivity behavior can favor changing the polymer molecular weight and polymer concentration during the course of injecting the polymer slug. Polymers with molecular weights from 12 to 35 million Daltons were designed and supplied to meet the requirements for different reservoir geological conditions. The optimum polymer-injection volume varied around 0.7 PV, depending on the water cut in the different flooding units. The average polymer concentration was designed approximately 1000 mg/L, but for an individual injection station, it could be 2000 mg/L or more. At Daqing, the injection rates should be less than 0.14-0.20 PV/year, depending on well spacing. Introduction Many elements have long been recognized as important during the design of a polymer flood (Li and Niu 2002; Jewett and Schurz 1970; Sorbie 1991; Vela et al. 1976; Taber et al. 1997; Maitin 1992; Koning et al. 1988; Wang et al. 1995; Wang and Qian 2002; Wang et al. 2008). This paper spells out some of those elements, using examples from the Daqing oil field. The Daqing oil field is located in northeast China and is a large river-delta/lacustrine-facies, multilayer, heterogeneous sandstone in an inland basin. The reservoir is buried at a depth of approximately 1000 m, with a temperature of 45°C. The main formation under polymer flood (i.e., the Saertu formation) has a net thickness ranging from from 2.3 to 11.6 m with an average of 6.1 m. The average air permeability is 1.1 µm2, and the Dykstra-Parsons permeability coefficient averages 0.7. Oil viscosity at reservoir temperature averages approximately 9 mPa·s, and the total salinity of the formation water varies from 3000 to 7000 mg/L. The field was discovered in 1959, and a waterflood was initiated in 1960. The world's largest polymer flood was implemented at Daqing, beginning in December 1995. By 2007, 22.3% of total production from the Daqing oil field was attributed to polymer flooding. Polymer flooding should boost the ultimate recovery for the field to more than 50% OOIP--10 to 12% OOIP more than from waterflooding. At the end of 2007, oil production from polymer flooding at the Daqing oil field was more than 11.6 million m3 (73 million bbl) per year (sustained for 6 years). The polymers used at Daqing are high-molecular-weight partially hydrolyzed polyacrylamides (HPAMs). During design of a polymer flood, critical reservoir factors that traditionally receive consideration are the reservoir lithology, stratigraphy, important heterogeneities (such as fractures), distribution of remaining oil, well pattern, and well distance. Critical polymer properties include cost-effectiveness (e.g., cost per unit of viscosity), resistance to degradation (mechanical or shear, oxidative, thermal, microbial), tolerance of reservoir salinity and hardness, retention by rock, inaccessible pore volume, permeability dependence of performance, rheology, and compatibility with other chemicals that might be used. Issues long recognized as important for polymer-bank design include bank size (volume), polymer concentration and salinity (affecting bank viscosity and mobility), and whether (and how) to grade polymer concentrations in the chase water. This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field.


2015 ◽  
Vol 9 (1) ◽  
pp. 7-13
Author(s):  
Peng Lv ◽  
Mingyuan Li ◽  
Meiqin Lin ◽  
Bo Peng ◽  
Zhaoxia Dong ◽  
...  

Viscosity-concentration and temperature performance are the prerequisite constraint factor of the application of polymer flooding in the oilfield. The static and dynamic adsorption of the polymer in the core can affect the performance of polymer flooding. Based on the viscosity-concentration, temperature and the static, dynamic adsorption results of six kinds of polymers, DQ3500 is chosen as the most suitable polymer for Zahra oilfield. Its affects show that oil recovery is increased by 7% and water cut is reduced by 20%.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Zheyu Liu ◽  
Yiqiang Li ◽  
Xin Chen ◽  
Yukun Chen ◽  
Jianrong Lyu ◽  
...  

Summary Surfactant-polymer (SP) flooding has been regarded as an efficient technique for enhanced oil recovery in the development of mature oil fields, especially for those with heterogeneous conglomerate reservoirs. However, people are still unclear about the optimal SP flooding initiation timing (OSPT) that is expected to contribute to the maximum ultimate recovery factor in the case with a limited amount of SP solution injection. Accordingly, this study aims to investigate OSPT through conducting a series of experiments, including nuclear magnetic resonance (NMR) online monitoring, full-diameter coreflooding, and microfluidic study. The fractional-flow curve is used to identify OSPT, of which the effect on the oil recovery is analyzed. OSPT is demonstrated to be dependent on the amount of injected SP solution. An earlier-started SP flooding is favorable for achieving higher oil recovery factors under the premise of sufficiently high SP solution injection [more than 1.5 pore volume (PV)]. With the commonly used 0.65 PV of SP solution in the reservoir scale, OSPT is suggested to be at the moment when a water cut of 80 to 90% is reached. The formation of dense emulsions in the early-started SP flooding affects the performance of the post-waterflooding, which eventually decreases the ultimate oil recoveries because of inadequacy of SP solution. An earlier-started SP flooding contributes to a larger swept volume, but the initial efficiency of the SP flooding is lower than that of the waterflooding when the injection pressure is constant. OSPT is proposed through analyzing the fractional-flow curve in the case of 0.65 PV of SP injection, and the determined OSPT is validated by coreflooding experiments and field data. Moreover, OSPT for the conglomerate reservoir is suggested to be earlier than that for the relatively homogenous sandstone reservoir.


2021 ◽  
Author(s):  
Weeraya Wuttipittayamongkol ◽  
Pannapon Trinavarat ◽  
Warisa Nuntaprayoon ◽  
Monrawee Pancharoen ◽  
Rapheephan Laochamroonvorapongse

Abstract Becoming more mature with field-wide water flooding implementation for more than 30 years, Sirikit Oil Field (S1) is going forward to the next rejuvenating step of enhanced oil recovery (EOR). Generally, the field contains light oil (40° API) in highly stratified sand-shale sequences with low net-to-gross ratios. High reservoir temperature, low permeability, and high water cut observed from production make it even more challenging for polymer injection projects. Nonetheless, the success from a small-scale field trial has shown a promising future of EOR application in the field and brought an execution of the first large-scale polymer injection pilot. Polymer screening laboratory tests, a reservoir simulation study, data acquisition program and techniques, injectivity tests, polymer injection unit design, and risk assessment were parts of the pilot preparation, in which the key learnings from the previous pilot have been incorporated. The gathering and determination of baseline parameters including production performance, injection profiles, reservoir fluid saturation profiles, etc., were registered for ultimate evaluation. Then, the continuous polymer injection has been started since October 2019 in two separated fault blocks where 12 injectors and 20 producers are located in different injection patterns. During several months of polymer injection, both foreseen and unforeseen changes have enlivened the pilot management. Although the injectivity test with polymer solution prior to the pilot demonstrated no injection difficulty, several wells have shown injectivity deterioration with time. Mechanical degradation is induced in these wells by the installation of flow restriction devices to lessen solution viscosity and, hence, prolong polymer injectivity. Well integrity issues and artificial lift breakdown negatively affect field production and close-in wells make it harder for voidage replacement control. Immediate troubleshooting and close monitoring have been placed and eventually leads to the recognition of encouraging results. Polymer helps improve vertical injection profiles as seen from injection logging. Saturation logging presents a sign of oil saturation decrease around the wellbore area. Reduction of water cut and rise of oil production have pleasantly come after a few months from the start. Intensive surveillance program will be continued over the course of pilot injection. The critical success of the EOR pilot execution depends on the detailed planning, prudent surveillance and comprehensive evaluation. Sirikit oil field is moving to a turning point and the pilot outcome would lead the way to a further milestone, so as to avoid premature end of the field's production.


2014 ◽  
Vol 900 ◽  
pp. 677-680
Author(s):  
Chun Hong Nie

This paper has discussed the characteristics, roles, feasibility and obvious effects of the technology by applying electric field to enhance oil recovery when the oil field is in high water cut stage and super high water cut stage. In view that most oil wells in old oil field have entered into the super high water cut production, the remaining oil in the main reservoir is in fragmented distribution with poor results of water injection and new reserves of oil mostly have a low penetration rate and are thin layers of poor physical properties, the use of the direct current field in period of high water cut is the best policy to achieve high and stable yield and is fairly promising.


2006 ◽  
Vol 9 (06) ◽  
pp. 664-673 ◽  
Author(s):  
Harry L. Chang ◽  
Xingguang Sui ◽  
Long Xiao ◽  
Zhidong Guo ◽  
Yuming Yao ◽  
...  

Summary The first large-scale colloidal dispersion gel (CDG) pilot test was conducted in the largest oil field in China, Daqing oil field. The project was initiated in May 1999, and injection of chemical slugs was completed in May 2003. This paper provides detailed descriptions of the gel-system characterization, chemical-slug optimization, project execution, performance analysis, injection facility design, and economics. The improvements of permeability variation and sweep efficiency were demonstrated by lower water cut, higher oil rate, improved injection profiles, and the increase of the total dissolved solids (TDS) in production wells. The ultimate incremental oil recovery (defined as the amount of oil recovered above the projected waterflood recovery at 98% water cut) in the pilot area would be approximately 15% of the original oil in place (OOIP). The economic analysis showed that the chemical costs were approximately U.S. $2.72 per barrel of incremental oil recovered. Results are presented in 15 tables and 8 figures. Introduction Achieving mobility control by increasing the injection fluid viscosity and achieving profile modification by adjusting the permeability variation in depth are two main methods of improving the sweep efficiency in highly heterogeneous and moderate viscous-oil reservoirs. In recent years (Wang et al. 1995, 2000, 2002; Guo et al. 2000), the addition of high-molecular-weight (MW) water-soluble polymers to injection water to increase viscosity has been applied successfully in the field on commercial scales. Weak gels, such as CDGs, formed with low-concentration polymers and small amounts of crosslinkers such as the trivalent cations aluminum (Al3+) and chromium (Cr3+) also have been applied successfully for in-depth profile modification (Fielding et al. 1994; Smith 1995; Smith and Mack 1997). Typical behaviors of CDGs and testing methods are given in the literature (Smith 1989; Ranganathan et al. 1997; Rocha et al. 1989; Seright 1994). The giant Daqing oil field is located in the far northeast part of China. The majority of the reservoir belongs to a lacustrine sedimentary deposit with multiple intervals. The combination of heterogeneous sand layers [Dykstra-Parsons (1950) heterogeneity indices above 0.5], medium oil viscosities (9 to 11 cp), mild reservoir temperatures (~45°C), and low-salinity reservoir brines [5,000 to 7,000 parts per million (ppm)] makes it a good candidate for chemical enhanced-oil-recovery processes. Daqing has successfully implemented commercial-scale polymer flooding (PF) since the early 1990s (Chang et al. 2006). Because the PF process is designed primarily to improve the mobility ratio (Chang 1978), additional oil may be recovered by using weak gels to further improve the vertical sweep. Along with the successes of PF in the Daqing oil field, two undesirable results were also observed:high concentrations of polymer produced in production wells owing to the injection of large amounts of polymer (~1000 ppm and 50% pore volume) andthe fast decline in oil rates and increase in water cuts after polymer injection was terminated. In 1997, a joint laboratory study between the Daqing oil field and Tiorco Inc. was conducted to investigate the potential of using the CDG process, or the CDG process with PF, to further improve the recovery efficiency, lower the polymer production in producing wells, and prolong the flood life. The joint laboratory study was completed in 1998 with encouraging results (Smith et al. 2000). Additional laboratory studies to further characterize the CDG gellation process, optimize the formulation, and investigate the degradation mechanisms were conducted in the Daqing field laboratories before the pilot test. A simplistic model was used to optimize the slug designs and predict incremental oil recovery. Initial designs called for a 25% pore volume (Vp) CDG slug with 700 ppm polymer and the polymer-to-crosslinker ratio (P/X) of 20 in a single inverted five-spot patten. Predicted incremental recovery was approximately 9% of OOIP.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zongyao Qi ◽  
Tong Liu ◽  
Changfeng Xi ◽  
Yunjun Zhang ◽  
Dehuang Shen ◽  
...  

It is challenging to enhance heavy oil recovery in the late stages of steam flooding. This challenge is due to reduced residual oil saturation, high steam-oil ratio, and lower profitability. A field test of the CO2-assisted steam flooding technique was carried out in the steam-flooded heavy oil reservoir in the J6 block of the Xinjiang oil field (China). In the field test, a positive response to the CO2-assisted steam flooding treatment was observed, including a gradually increasing heavy oil production, an increase in the formation pressure, and a decrease in the water cut. The production wells in the test area mainly exhibited four types of production dynamics, and some of the production wells exhibited production dynamics that were completely different from those during steam flooding. After being flooded via CO2-assisted steam flooding, these wells exhibited a gravity drainage pattern without steam channeling issues, and hence, they yielded stable oil production. In addition, emulsified oil and CO2 foam were produced from the production well, which agreed well with the results of laboratory-scale tests. The reservoir-simulation-based prediction for the test reservoir shows that the CO2-assisted steam flooding technique can reduce the steam-oil ratio from 12 m3 (CWE)/t to 6 m3 (CWE)/t and can yield a final recovery factor of 70%.


2021 ◽  
pp. 61-72
Author(s):  
I. G. Sabanina ◽  
T. V. Semenova ◽  
Yu. Ya. Bolshakov ◽  
S. V. Vorobjeva

Currently, most of the oil fields in the West Siberian oil and gas province are in the final stage of development. There is water-cut in production, a decrease in oil production, and the structure of residual reserves deteriorates. The search and application of the most successful scientific methods and technologies for improving oil recovery in the development of fields is quite an urgent task.It should be taken into account that hydrophobic reservoirs are common in the oil fields of Western Siberia, and when applying the method of reservoir flooding, this fact should be taken into account and a more detailed approach should be taken to the study of capillary forces to prevent flooding of productive objects. Despite the good knowledge of the West Siberian megabasin, some fundamental issues of its structure and oil and gas potential remain debatable.The article proposes methods for improving oil recovery of the BS10 formation of the Ust-Balykskoye oil field based on the study of capillary pressures in productive reservoir formations, and provides recommendations for the placement of injection wells. The study of the capillary properties of reservoir rocks will significantly improve the efficiency of exploration and field operations in oil fields.


Sign in / Sign up

Export Citation Format

Share Document