A Methodology To Reduce Uncertainty Constrained to Observed Data

2009 ◽  
Vol 12 (01) ◽  
pp. 167-180 ◽  
Author(s):  
Célio Maschio ◽  
Denis J. Schiozer ◽  
Marcos A.B. de Moura Filho ◽  
Gustavo G. Becerra

Summary This paper presents a new methodology to deal with uncertainty mitigation by using observed data, integrating the uncertainty analysis, and the history matching processes. The proposed methods are robust and easy to use, and offer an alternative to traditional history matching methodologies. The main characteristic of the methodology is the use of observed data as constraints to reduce the uncertainty of the reservoir parameters. The main objective is the integration of uncertainty analysis with history matching, providing a natural manner to make predictions under reduced uncertainty. Three methods are proposed:probability redistribution,elimination of attribute levels, andredefinition of attribute values. To test the results of the proposed approach, we investigated three reservoir examples. The first one is a synthetic and simple case; the second one is a synthetic but realistic case; and the third one is a real reservoir from the Campos basin of Brazil. The results presented in the paper show that it is possible to conduct an integrated study of uncertainty analysis and history matching. The main contribution of this work is to present a practical way to increase the reliability of prediction through reservoir simulation models that incorporate uncertainty analysis in the history period and provide reliable reservoir-simulation models for prediction forecast.

2021 ◽  
Author(s):  
Mokhles Mezghani ◽  
Mustafa AlIbrahim ◽  
Majdi Baddourah

Abstract Reservoir simulation is a key tool for predicting the dynamic behavior of the reservoir and optimizing its development. Fine scale CPU demanding simulation grids are necessary to improve the accuracy of the simulation results. We propose a hybrid modeling approach to minimize the weight of the full physics model by dynamically building and updating an artificial intelligence (AI) based model. The AI model can be used to quickly mimic the full physics (FP) model. The methodology that we propose consists of starting with running the FP model, an associated AI model is systematically updated using the newly performed FP runs. Once the mismatch between the two models is below a predefined cutoff the FP model is switch off and only the AI model is used. The FP model is switched on at the end of the exercise either to confirm the AI model decision and stop the study or to reject this decision (high mismatch between FP and AI model) and upgrade the AI model. The proposed workflow was applied to a synthetic reservoir model, where the objective is to match the average reservoir pressure. For this study, to better account for reservoir heterogeneity, fine scale simulation grid (approximately 50 million cells) is necessary to improve the accuracy of the reservoir simulation results. Reservoir simulation using FP model and 1024 CPUs requires approximately 14 hours. During this history matching exercise, six parameters have been selected to be part of the optimization loop. Therefore, a Latin Hypercube Sampling (LHS) using seven FP runs is used to initiate the hybrid approach and build the first AI model. During history matching, only the AI model is used. At the convergence of the optimization loop, a final FP model run is performed either to confirm the convergence for the FP model or to re iterate the same approach starting from the LHS around the converged solution. The following AI model will be updated using all the FP simulations done in the study. This approach allows the achievement of the history matching with very acceptable quality match, however with much less computational resources and CPU time. CPU intensive, multimillion-cell simulation models are commonly utilized in reservoir development. Completing a reservoir study in acceptable timeframe is a real challenge for such a situation. The development of new concepts/techniques is a real need to successfully complete a reservoir study. The hybrid approach that we are proposing is showing very promising results to handle such a challenge.


Author(s):  
Paulo Camargo Silva ◽  
Virgílio José Martins Ferreira Filho

In the recent literature of the production history matching the problem of non-uniqueness of reservoir simulation models has been considered a difficult problem. Complex workflows have been proposed to solve the problem. However, the reduction of uncertainty can only be done with the definition of Probability Density Functions that are highly costly. In this article we introduce a methodology to reduce uncertainty in the history matching using techniques of Monte Carlo performed on proxies as Reservoir Simulator. This methodology is able to compare different Probability Density Functions for different reservoir simulation models to define among the models which simulation model can provide more appropriate matching.


Author(s):  
Margarita A. Smetkina ◽  
◽  
Oleg A. Melkishev ◽  
Maksim A. Prisyazhnyuk ◽  
◽  
...  

Reservoir simulation models are used to design oil field developments, estimate efficiency of geological and engineering operations and perform prediction calculations of long-term development performances. A method has been developed to adjust the permeability cube values during reservoir model history-matching subject to the corederived dependence between rock petrophysical properties. The method was implemented using an example of the Bobrikovian formation (terrigenous reservoir) deposit of a field in the Solikamskian depression. A statistical analysis of the Bobrikovian formation porosity and permeability properties was conducted following the well logging results interpretation and reservoir modelling data. We analysed differences between the initial permeability obtained after upscaling the geological model and permeability obtained after the reservoir model history-matching. The analysis revealed divergences between the statistical characteristics of the permeability values based on the well logging data interpretation and the reservoir model, as well as substantial differences between the adjusted and initial permeability cubes. It was established that the initial permeability was significantly modified by manual adjustments in the process of history-matching. Extreme permeability values were defined and corrected based on the core-derived petrophysical dependence KPR = f(KP) , subject to ranges of porosity and permeability ratios. By using the modified permeability cube, calculations were performed to reproduce the formation production history. According to the calculation results, we achieved convergence with the actual data, while deviations were in line with the accuracy requirements to the model history-matching. Thus, this method of the permeability cube adjustment following the manual history-matching will save from the gross overestimation or underestimation of permeability in reservoir model cells.


2021 ◽  
Author(s):  
Bjørn Egil Ludvigsen ◽  
Mohan Sharma

Abstract Well performance calibration after history matching a reservoir simulation model ensures that the wells give realistic rates during the prediction phase. The calibration involves adjusting well model parameters to match observed production rates at specified backpressure(s). This process is usually very time consuming such that the traditional approaches using one reservoir model with hundreds of high productivity wells would take months to calibrate. The application of uncertainty-centric workflows for reservoir modeling and history matching results in many acceptable matches for phase rates and flowing bottom-hole pressure (BHP). This makes well calibration even more challenging for an ensemble of large number of simulation models, as the existing approaches are not scalable. It is known that Productivity Index (PI) integrates reservoir and well performance where most of the pressure drop happens in one to two grid blocks around well depending upon the model resolution. A workflow has been setup to fix transition by calibrating PI for each well in a history matched simulation model. Simulation PI can be modified by changing permeability-thickness (Kh), skin, or by applying PI multiplier as a correction. For a history matched ensemble with a range in water-cut and gas-oil ratio, the proposed workflow involves running flowing gradient calculations for a well corresponding to observed THP and simulated rates for different phases to calculate target BHP. A PI Multiplier is then calculated for that well and model that would shift simulation BHP to target BHP as local update to reduce the extent of jump. An ensemble of history matched models with a range in water-cut and gas-oil ratio have a variation in required BHPs unique to each case. With the well calibration performed correctly, the jump observed in rates while switching from history to prediction can be eliminated or significantly reduced. The prediction thus results in reliable rates if wells are run on pressure control and reliable plateau if the wells are run on group control. This reduces the risk of under/over-predicting ultimate hydrocarbon recovery from field and the project's cashflow. Also, this allows running sensitivities to backpressure, tubing design, and other equipment constraints to optimize reservoir performance and facilities design. The proposed workflow, which dynamically couple reservoir simulation and well performance modeling, takes a few seconds to run for a well, making it fit-for-purpose for a large ensemble of simulation models with a large number of wells.


PETRO ◽  
2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria Irmina Widyastuti ◽  
Maman Djumantara

<p>Reservoir simulation is an area of reservoir engineering in which computer models are used to predict the flow of fluids through porous media. Reservoir simulation process starts with several steps; data preparation, model and grid construction, initialization, history matching and prediction. Initialization process is done for matching OOIP or total initial hydrocarbon which fill reservoir with hydrocarbon control volume with volumetric method.</p><p>To aim the best encouraging optimum data, the plant of developments of this field was predicted for 22 years( until December 2035). The Scenario consisted of five different variation. First one is basecase, second scenario is scenario 1 + workover, third scenario would be scenario 1 + infill wells, fourth scenario is scenario 1 + peripheral injection, and the last fifth scenario is scenario 1 + 5-spot injection pattern wells. From all of the scenarios planned, recovery from from each scenario varied, the results are 31.05% for the first scenario, 31.53%, for the second one, 34.12%, for the third, 33.75% for the fourth scenario, and 37.04% for the fifth scenario which is the last one.</p><p>Keywords: reservoir simulation,reservoir simulator, history matching</p>


Sign in / Sign up

Export Citation Format

Share Document