Density Of High Pressure And Temperature Gas Reservoirs: Effect Of Non-Hydrocarbon Contaminants On Density Of Natural Gas Mixtures

Author(s):  
Farshad Tabasinejad ◽  
Robert Gordon Moore ◽  
Sudarshan A. Mehta ◽  
Kees Cornelius Van Fraassen ◽  
Yalda Barzin ◽  
...  
2020 ◽  
Vol 221 ◽  
pp. 364-370
Author(s):  
Jiankun Shao ◽  
Alison M. Ferris ◽  
Rishav Choudhary ◽  
Séan J. Cassady ◽  
David F. Davidson ◽  
...  

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
K. K. Botros ◽  
J. Geerligs ◽  
R. J. Eiber

Measurements of decompression wave speed in conventional and rich natural gas mixtures following rupture of a high-pressure pipe have been conducted. A high-pressure stainless steel rupture tube (internal diameter=38.1 mm and 42 m long) has been constructed and instrumented with 16 high frequency-response pressure transducers mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures of 33–37 MPa-a and a temperature range of 21–68°C. The experimentally determined decompression wave speeds were compared with both GASDECOM and PIPEDECOM predictions with and without nonequilibrium condensation delays at phase crossing. The interception points of the isentropes representing the decompression process with the corresponding phase envelope of each mixture were correlated with the respective plateaus observed in the decompression wave speed profiles. Additionally, speeds of sound in the undisturbed gas mixtures at the initial pressures and temperatures were compared with predictions by five equations of state, namely, BWRS, AGA-8, Peng–Robinson, Soave–Redlich–Kwong, and Groupe Européen de Recherches Gaziéres. The measured gas decompression curves were used to predict the fracture arrest toughness needed to assure fracture control in natural gas pipelines. The rupture tube test results have shown that the Charpy fracture arrest values predicted using GASEDCOM are within +7% (conservative) and −11% (nonconservative) of the rupture tube predicted values. Similarly, PIPEDECOM with no temperature delay provides fracture arrest values that are within +13% and −20% of the rupture tube predicted values, while PIPEDECOM with a 1°C temperature delay provides fracture arrest values that are within 0% and −20% of the rupture tube predicted values. Ideally, it would be better if the predicted values by the equations of state were above the rupture tube predicted values to make the predictions conservative but that was not always the case.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Xiaoliang Huang ◽  
Zhilin Qi ◽  
Sainan Li ◽  
Qianhua Xiao ◽  
Fei Mo ◽  
...  

Abstract Because of a large amount of natural gas dissolved in the formation water of high-temperature and high-pressure (HTHP) water-soluble gas reservoirs, the water vapor content in water-soluble gas reservoirs is generally maintained under a supersaturated state; meanwhile, natural gas has a high carbon dioxide fraction, which significantly affects the water vapor content. Application of the conventional method to calculate the water content of HTHP water-soluble gas reservoirs leads to errors. In this work, the water content of HTHP water-soluble gas reservoirs was studied through laboratory experiments and theoretical research, and the main factors affecting water content were studied. Results show that the water content of water-soluble gas reservoirs decreases as pressure increases. The water content decreases faster in the low-pressure stage, while the decease of water content in the high-pressure stage is relatively steady. The water content of gas reservoirs increases with increasing temperature. When the temperature is lower than 100 °C, the change is slow; when the temperature is higher than 100 °C, the change is fast. The water content of gas reservoirs is affected by temperature during the low-pressure stage. The water content in the high-temperature stage is obviously affected by pressure; the water content of the gas reservoir is also affected by the carbon dioxide content of the natural gas component and the salinity of the formation water. Higher carbon dioxide content and lower formation water salinity yield higher water content. Furthermore, error analysis of the conventional water content prediction method and the measurement shows inconsistency in measurement and calculation. The error between the two methods is large, with an average of 54.88%. Based on the experiment, a mathematical model for calculating the water content of HTHP water-soluble gas reservoirs was established considering pressure, temperature, salinity, and natural gas composition. The predicted water vapor content of natural gas is close to the experimental value with a high precision. The average relative error between the measured and model calculated value is about 8.72%.


2020 ◽  
Vol 518 ◽  
pp. 112620 ◽  
Author(s):  
Saif ZS. Al Ghafri ◽  
Thomas J. Hughes ◽  
Fernando Perez ◽  
Corey J. Baker ◽  
Arman Siahvashi ◽  
...  

2019 ◽  
Vol 44 (14) ◽  
pp. 7428-7437 ◽  
Author(s):  
Bin Liu ◽  
Xiong Liu ◽  
Cheng Lu ◽  
Ajit Godbole ◽  
Guillaume Michal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document