Alternatives to Minimize Scale Precipitation in Carbonate Cores Caused by Alkalis in ASP Flooding in High Salinity/High Temperature Applications

Author(s):  
Mohammed Abdullah Bataweel ◽  
Hisham A. Nasr-El-Din
2021 ◽  
Author(s):  
Ilyas Khurshid ◽  
Emad W. Al-Shalabi ◽  
Imran Afgan

Abstract Several laboratory experiments demonstrated that the use of sodium hydroxide could increase the solution pH and reduce the adsorption of anionic surfactants. However, a better understanding of rock-oil-brine interactions and their effect on surfactant adsorption during alkaline-surfactant-polymer (ASP) flooding is needed for realistic and representative estimations of surfactant adsorption levels. Therefore, this study presents a novel approach to capture these interactions and better predict their effect on surfactant adsorption as well as effluent concentrations of surfactant and various aqueous species. Currently, surface complexation models (SCM) consider rock-brine, oil-brine, and surfactant-brine reactions. In this work, four new surface complexation reactions with intrinsic stability constants that honor oil-surfactant interactions have been proposed for the first time and then validated against experimental data reported in the literature. In addition, we analyzed the effect of various parameters on surface adsorption under harsh conditions of high-temperature and high-salinity using the proposed surface complexation model (SCM). The results showed that the developed surfactant-based SCM is robust and accurate for estimating surfactant adsorption and its concentration in the effluent during chemical floods. The model was validated against two sets of ASP corefloods from the literature including single-phase and two-phase dynamic surfactant adsorption studies. The findings highlighted that oil-surfactant surface complexation reactions are important and should be captured for more representative and accurate estimation of surfactant adsorption during chemical flooding. Moreover, the detail and comprehensive analysis showed that surfactant adsorption increases and its concentration in the effluent decreases with the increase in temperature of the chemical flood, which could be due to the increase in kinetic energy of the species. It was also showed that a decrease in water total salinity decreases the surfactant adsorption on the rock surface, which is related to the increase in the repulsive forces between the adsorbed species. Additionally, with the increase in surfactant concentration in the chemical flood, the effluent surfactant concertation increases, with a slight increase in surfactant adsorption. This slight increase in adsorption can be neglected compared to the injected and produced masses of the surfactant that are proportional. Moreover, the effect of sulfate spiking is significant where the increase in sulfate concentration reduces the surfactant adsorption. Furthermore, it is worth highlighting that the lowest surfactant adsorption levels were achieved through injected water dilution; less than 0.1 mg/g of rock. This is the first study to test a novel formulation of surface complexation modeling considering oil-surfactant effect on surfactant adsorption properties. The proposed framework to estimate surfactant adsorption is conducted for high-temperature and high-salinity reservoir condition. Thus, it could be used in numerical reservoir simulators to estimate oil recovery due to wettability alteration by chemical flooding in carbonates, which will be investigated in our future work. The surfactant adsorption mechanisms during chemical flooding is very case-dependent and hence, the findings of this study cannot be generalized.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2013 ◽  
Author(s):  
Fan Zhang ◽  
Desheng Ma ◽  
Qiang Wang ◽  
Youyi Zhu ◽  
Wenli Luo

Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1978 ◽  
Vol 27 (6) ◽  

Abstract THERMALLOY 63W is a cast nickel-chromium-tungsten-iron alloy produced for service at temperature up to 1900 F. Centrifugally cast reformer tubes comprise one of its high-temperature applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-352. Producer or source: Abex Corporation, Engineered Products Division.


2010 ◽  
Vol 25 (11) ◽  
pp. 1169-1174 ◽  
Author(s):  
Xiang-Ping JIANG ◽  
Qing YANG ◽  
Chao CHEN ◽  
Na TU ◽  
Zu-Deng YU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document