Gas Injection Enhanced Oil Recovery Application in a Mature Naturally-Fractured-Carbonate Reservoir

Author(s):  
J. E. Buenaventura ◽  
R. S. Alvarez ◽  
J. G. Flores ◽  
I. E. Martinez
SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hang Su ◽  
Fujian Zhou ◽  
Qing Wang ◽  
Fuwei Yu ◽  
Rencheng Dong ◽  
...  

Summary Enhanced oil recovery (EOR) in fractured carbonate reservoirs is challenging because of the heterogeneous and oil-wet nature. In this work, a new application of using polymer nanospheres (PNSs) and diluted microemulsion (DME) is presented to plug fractures and enhance water imbibition to recover oil from the tight, naturally fractured carbonate reservoirs. DME with different electric charges is compared through contact-angle and core-imbibition tests to evaluate their performances on EOR. The cationic DME is chosen because it has the fastest wettability-alteration rate and thus the highest oil recovery rate. Migration and plugging efficiency tests are conducted to identify the screened particle sizes of PNSs for the target reservoir cores. PNSs with a particle size of 300 nm are demonstrated to have the best performance of in-depth propagation before swelling and plugging after swelling within the naturally fractured cores are used in this study. Then coreflooding experiments are conducted to evaluate the EOR performance when PNSs and DME are used together, and results indicate that the oil recovery rate is increased by 24.3 and 44.1% compared to using PNSs or DME alone. In the end, a microfluidic experiment is carried out to reveal how DME works with PNSs.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3699 ◽  
Author(s):  
Faisal Awad Aljuboori ◽  
Jang Hyun Lee ◽  
Khaled A. Elraies ◽  
Karl D. Stephen

Gravity drainage is one of the essential recovery mechanisms in naturally fractured reservoirs. Several mathematical formulas have been proposed to simulate the drainage process using the dual-porosity model. Nevertheless, they were varied in their abilities to capture the real saturation profiles and recovery speed in the reservoir. Therefore, understanding each mathematical model can help in deciding the best gravity model that suits each reservoir case. Real field data from a naturally fractured carbonate reservoir from the Middle East have used to examine the performance of various gravity equations. The reservoir represents a gas–oil system and has four decades of production history, which provided the required mean to evaluate the performance of each gravity model. The simulation outcomes demonstrated remarkable differences in the oil and gas saturation profile and in the oil recovery speed from the matrix blocks, which attributed to a different definition of the flow potential in the vertical direction. Moreover, a sensitivity study showed that some matrix parameters such as block height and vertical permeability exhibited a different behavior and effectiveness in each gravity model, which highlighted the associated uncertainty to the possible range that often used in the simulation. These parameters should be modelled accurately to avoid overestimation of the oil recovery from the matrix blocks, recovery speed, and to capture the advanced gas front in the oil zone.


2015 ◽  
Vol 135 ◽  
pp. 10-15 ◽  
Author(s):  
Dexin Liu ◽  
Xun Zhong ◽  
Jianfei guo ◽  
Xiaofei Shi ◽  
Yingan Qi ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


Sign in / Sign up

Export Citation Format

Share Document