Blowout Well-Flow Simulation for Deepwater Drilling using High-Pressure/High-Temperature (HP/HT) Black-Oil Viscosity Model

2015 ◽  
Author(s):  
Zhengchun Liu ◽  
Robello Samuel ◽  
Adolfo Gonzales ◽  
Yongfeng Kang
SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Sidharth Gautam ◽  
Chandan Guria ◽  
Laldeep Gope

Summary Determining the rheology of drilling fluid under subsurface conditions—that is, pressure > 103.4 MPa (15,000 psi) and temperature > 450 K (350°F)—is very important for safe and trouble-free drilling operations of high-pressure/high-temperature (HP/HT) wells. As the severity of HP/HT wells increases, it is challenging to measure downhole rheology accurately. In the absence of rheology measurement tools under HP/HT conditions, it is essential to develop an accurate rheological model under extreme conditions. In this study, temperature- and pressure-dependence rheology of drilling fluids [i.e., shear viscosity, apparent viscosity (AV), and plastic viscosity (PV)] are predicted at HP/HT conditions using the fundamental momentum transport mechanism (i.e., kinetic theory) of liquids. Drilling fluid properties (e.g., density, thermal decomposition temperature, and isothermal compressibility), and Fann® 35 Viscometer (Fann Instrument Corporation, Houston, USA) readings at surface conditions, are the only input parameters for the proposed HP/HT shear viscosity model. The proposed model has been tested using 26 different types of HP/HT drilling fluids, including water, formate, oil, and synthetic oil as base fluids. The detailed error and the sensitivity analysis have been performed to demonstrate the accuracy of the proposed model and yield comparative results. The proposed model is quite simple and may be applied to accurately predict the rheology of numerous drilling fluids. In the absence of subsurface rheology under HP/HT conditions, the proposed viscosity model may be used as a reliable soft-sensor tool for the online monitoring and control of rheology under downhole conditions while drilling HP/HT wells.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2021 ◽  
Vol 137 ◽  
pp. 111189
Author(s):  
E.A. Ekimov ◽  
K.M. Kondrina ◽  
I.P. Zibrov ◽  
S.G. Lyapin ◽  
M.V. Lovygin ◽  
...  

Author(s):  
Gunter Heymann ◽  
Elisabeth Selb ◽  
Toni Buttlar ◽  
Oliver Janka ◽  
Martina Tribus ◽  
...  

By high-pressure/high-temperature multianvil synthesis a new high-pressure (HP) phase of Co3TeO6 was obtained. The compound crystallizes in the acentric trigonal crystal system of the Ni3TeO6-type structure with space group R3...


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


Sign in / Sign up

Export Citation Format

Share Document