Worm-Like Micelles as a Mobility Control Agent for Chemical Enhanced Oil Recovery

Author(s):  
S. Kumar ◽  
Mariyamni Awang ◽  
Shuaib Ahmed ◽  
Naeem Ul. hussain Dehraj ◽  
Yasir Sheikh Saleem
Fuel ◽  
2019 ◽  
Vol 241 ◽  
pp. 442-450 ◽  
Author(s):  
Yan Zhang ◽  
Mingwei Gao ◽  
Qing You ◽  
Hongfu Fan ◽  
Wenhui Li ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 396-405 ◽  
Author(s):  
Zhao Min Li ◽  
Zu Peng Liu

Abstract. Foam, as a mobility control agent in enhanced oil recovery, is becoming more and more attractive. However, this method may be inefficient when water channeling appears in the reservoir due to its heterogeneity. Therefore, it is reasonable to block its flow through preferential channels by an enhanced foam system. A novel foam system is developed by the combination of general two phase foam system with solid particles to improve its performance for deep conformance control in reservoirs. This new foam system involves gas, liquid and particles. Firstly, micro-sphere shape and morphological distribution of particles have been observed through the microscope. Destruction mechanism and stability of multi-phase foam were analyzed in theory. In addition, the concentration of polymer and solid micro-sphere used as the foam agent were determined by orthogonal experiments. Next, micro-sphere displacement experiment shows that it can not only block throats but also migrate through throats by deformation, which can be represented by the pressure curves. Multi-phase foam system presents a similar pressure fluctuation with micro-sphere flooding. Finally, the parallel core experiments were conducted to investigate pressure distribution of two phase foam and multi-phase foam system in porous media respectively. The results show that multi-phase foam can effectively improve the profile control ability and it is adaptable for deep conformance in reservoir.


2018 ◽  
Author(s):  
Sandeep Kumar ◽  
Shuaib Ahmed Kalwar ◽  
Ghulam Abbas ◽  
Abdul Quddos Awan

2004 ◽  
Author(s):  
George J. Hirasaki ◽  
Clarence A. Miller ◽  
Gary A. Pope ◽  
Richard E. Jackson

2015 ◽  
Author(s):  
Muhammad Sagir ◽  
Muhammad Mushtaq ◽  
Muhammad Rehan Hashment

ICIPEG 2016 ◽  
2017 ◽  
pp. 205-215
Author(s):  
Shehzad Ahmed ◽  
Khaled Abdalla Elraies ◽  
Isa M. Tan ◽  
Mudassar Mumtaz

SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 249-259 ◽  
Author(s):  
Yunshen Chen ◽  
Amro S. Elhag ◽  
Benjamin M. Poon ◽  
Leyu Cui ◽  
Kun Ma ◽  
...  

Summary To improve sweep efficiency for carbon dioxide (CO2) enhanced oil recovery (EOR) up to 120°C in the presence of high-salinity brine (182 g/L NaCl), novel CO2/water (C/W) foams have been formed with surfactants composed of ethoxylated amine headgroups with cocoalkyl tails. These surfactants are switchable from the nonionic (unprotonated amine) state in dry CO2 to cationic (protonated amine) in the presence of an aqueous phase with a pH less than 6. The high hydrophilicity in the protonated cationic state was evident in the high cloudpoint temperature up to 120°C. The high cloud point facilitated the stabilization of lamellae between bubbles in CO2/water foams. In the nonionic form, the surfactant was soluble in CO2 at 120°C and 3,300 psia at a concentration of 0.2% (w/w). C/W foams were produced by injecting the surfactant into either the CO2 phase or the brine phase, which indicated good contact between phases for transport of surfactant to the interface. Solubility of the surfactant in CO2 and a favorable C/W partition coefficient are beneficial for transport of surfactant with CO2-flow pathways in the reservoir to minimize viscous fingering and gravity override. The ethoxylated cocoamine with two ethylene oxide (EO) groups was shown to stabilize C/W foams in a 30-darcy sandpack with NaCl concentrations up to 182 g/L at 120°C and 3,400 psia, and foam qualities from 50 to 95%. The foam produces an apparent viscosity of 6.2 cp in the sandpack and 6.3 cp in a 762-μm-inner-diameter capillary tube (downstream of the sandpack) in contrast with values well below 1 cp without surfactant present. Moreover, the cationic headgroup reduces the adsorption of ethoxylated alkyl amines on calcite, which is also positively charged in the presence of CO2 dissolved in brine. The surfactant partition coefficients (0 to 0.04) favored the water phase over the oil phase, which is beneficial for minimizing losses of surfactant to the oil phase for efficient surfactant usage. Furthermore, the surfactant was used to form C/W foams, without forming stable/viscous oil/water (O/W) emulsions. This selectivity is desirable for mobility control whereby CO2 will have low mobility in regions in which oil is not present and high contact with oil at the displacement front. In summary, the switchable ethoxylated alkyl amine surfactants provide both high cloudpoints in brine and high interfacial activities of ionic surfactants in water for foam generation, as well as significant solubilities in CO2 in the nonionic dry state for surfactant injection.


Sign in / Sign up

Export Citation Format

Share Document