Effect of nano silica particles on Interfacial Tension (IFT) and mobility control of natural surfactant (Cedr Extraction) solution in enhanced oil recovery process by nano - surfactant flooding

2017 ◽  
Vol 248 ◽  
pp. 163-167 ◽  
Author(s):  
Samira Emadi ◽  
Seyed Reza Shadizadeh ◽  
Abbas Khaksar Manshad ◽  
Abdorrahman Moghani Rahimi ◽  
Amir H. Mohammadi
2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 65-73
Author(s):  
Agam Duma Kalista Wibowo ◽  
Pina Tiani ◽  
Lisa Aditya ◽  
Aniek Sri Handayani ◽  
Marcelinus Christwardana

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate


2021 ◽  
Author(s):  
Usman Aslam

Abstract Surfactant flooding has long been considered a reliable solution for enhanced oil recovery, either by reducing oil-water interfacial tension (IFT) or through wettability alteration. This paper reveals the effect that reduced IFT has on capillary trapping in heterogeneous reservoirs. This effect is investigated through various numerical experiments on different simulation models where rock capillary pressure is assumed to scale with IFT. Capillary contrast on the scale of a few centimeters to a few tens of meters is reduced in the presence of surfactants. This reduction in IFT, under very specific circumstances, creates favorable conditions for increased or accelerated hydrocarbon production from mixed-wet reservoirs. The focus of this study is to ascertain the effectiveness of surfactant flooding in mixed-wet reservoirs. Simulation studies of different mechanisms which are believed to occur in mixed-wet reservoirs are presented. Simulation results indicate the promising effect of surfactant flooding on oil recovery, depending on the type of reservoir. Detailed fine-scale simulation studies are carried out with representative relative permeability and imbibition capillary pressure curves from mixed-wet cores. By designing and selecting a series of surfactants to lower the IFT to the range of 10-3dynes/cm, a recovery of 10 to 20% of the original oil-in-place is technically and economically feasible. The efficiency of surfactant flooding is investigated through sensitivity scenarios on formation rock/fluid parameters, including permeability, interfacial tension, rate flow, etc. Geological heterogeneity (layering and heterogeneous inclusions), imbibition capillary pressure curves, viscous/capillary balance (Nc), and gravitational forces were all found to have an impact on recovery by surfactant flooding. Numerical model dimensions, permeability, IFT, density contrast between oil and water, and injection flow rates were found to be the critical parameters influencing simulation results. Gravity segregation, typically ignored in earlier studies, was found to have a significant effect on reservoir performance. Two different numerical models, with and without impermeable shale streaks, were used to capture the gravity segregation effect. The results revealed that the reduction in interfacial tension helps gravity to segregate oil and water, ultimately resulting in improved oil recovery. Moreover, results from the numerical simulation studies revealed that either an inexpensive or a good quality surfactant at low concentration can be used to obtain the same enhanced oil recovery. The effect of change in oil relative permeability curvature, due to reduced interfacial tension, also revealed a reduction in the remaining oil saturation with an increase in the capillary number.


2017 ◽  
Vol 890 ◽  
pp. 235-238 ◽  
Author(s):  
Chitipat Chuaicham ◽  
Kreangkrai Maneeintr

To enhance oil recovery, surfactant flooding is one of the techniques used to reduce the interfacial tension (IFT) between displacing and displaced phases in order to maximize productivity. Due to high salinity of crude oil in the North of Thailand, surfactant flooding is a suitable choice to perform enhanced oil recovery. The objective of this work is to measure the IFT and observe the effects of parameters such as pressure, temperature, concentration and salinity on IFT reduction. In this study, sodium dodecylbenzenesulfonate is used as surfactant to reduce IFT. The results show that the major factor affecting reduction of IFT is surfactant concentration accounting for 98.1%. IFT reduces with the increase of salinity up to 86.3% and up to 9.6% for temperature. However, pressure has less effect on IFT reduction. The results of this work can apply to increase oil production in the oilfield in the North of Thailand.


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1186-1195 ◽  
Author(s):  
Hua Guo ◽  
Pacelli L.J. Zitha ◽  
Rien Faber ◽  
Marten Buijse

Summary This article reports a laboratory study of a novel alkaline/surfactant/foam (ASF) process. The goal of the study was to investigate whether foaming a specially designed alkaline/surfactant (AS) formulation could meet the two key requirements for a good enhanced oil recovery (EOR) [i.e., lowering the interfacial tension (IFT) considerably and ensuring a good mobility control]. The study included phase-behavior tests, foam-column tests, and computed-tomography (CT)-scan-aided corefloods. It was found that the IFT of the designed AS and a selected crude oil drops by four orders of magnitude at the optimum salinity. The AS proved to be a good foaming agent in the column tests and corefloods in the absence of oil. The mobility reduction caused by the AS foam was hardly sensitive to salinity and increased with decreasing foam quality. CT-scanned corefloods demonstrated that AS foam, after a small AS preflush, recovered almost all the oil left after waterflooding. The oil-recovery mechanism by ASF combines the formation of an oil bank and the transport of emulsified oil by flowing lamellae. Further optimization of the ASF is needed to ensure that the oil is produced exclusively by the oil bank.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1946
Author(s):  
Bashirul Haq

Green enhanced oil recovery is an oil recovery process involving the injection of specific environmentally friendly fluids (liquid chemicals and gases) that effectively displace oil due to their ability to alter the properties of enhanced oil recovery. In the microbial enhanced oil recovery (MEOR) process, microbes produce products such as surfactants, polymers, ketones, alcohols, and gases. These products reduce interfacial tension and capillary force, increase viscosity and mobility, alter wettability, and boost oil production. The influence of ketones in green surfactant-polymer (SP) formulations is not yet well understood and requires further analysis. The work aims to examine acetone and butanone’s effectiveness in green SP formulations used in a sandstone reservoir. The manuscript consists of both laboratory experiments and simulations. The two microbial ketones examined in this work are acetone and butanone. A spinning drop tensiometer was utilized to determine the interfacial tension (IFT) values for the selected formulations. Viscosity and shear rate across a wide range of temperatures were measured via a Discovery hybrid rheometer. Two core flood experiments were then conducted using sandstone cores at reservoir temperature and pressure. The two formulations selected were an acetone and SP blend and a butanone and SP mixture. These were chosen based on their IFT reduction and viscosity enhancement capabilities for core flooding, both important in assessing a sandstone core’s oil recovery potential. In the first formulation, acetone was mixed with alkyl polyglucoside (APG), a non-ionic green surfactant, and the biopolymer Xanthan gum (XG). This formulation produced 32% tertiary oil in the sandstone core. In addition, the acetone and SP formulation was effective at recovering residual oil from the core. In the second formulation, butanone was blended with APG and XG; the formulation recovered about 25% residual oil from the sandstone core. A modified Eclipse simulator was utilized to simulate the acetone and SP core-flood experiment and examine the effects of surfactant adsorption on oil recovery. The simulated oil recovery curve matched well with the laboratory values. In the sensitivity analysis, it was found that oil recovery decreased as the adsorption values increased.


Sign in / Sign up

Export Citation Format

Share Document