Accurate Prediction Model for Rheological Properties of Drilling Fluids at High Temperature and High Pressure Conditions

Author(s):  
H. Fan ◽  
H. Zhou ◽  
X. Meng ◽  
J. Gao ◽  
G. Wang
2012 ◽  
Vol 9 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Fuhua Wang ◽  
Xuechao Tan ◽  
Ruihe Wang ◽  
Mingbo Sun ◽  
Li Wang ◽  
...  

2008 ◽  
Vol 15 (S1) ◽  
pp. 457-461 ◽  
Author(s):  
Sheng-ying Zhao ◽  
Jie-nian Yan ◽  
Yong Shu ◽  
Hong-xia Zhang

Author(s):  
Qian Ding ◽  
Baojiang Sun ◽  
Zhiyuan Wang ◽  
Yonghai Gao ◽  
Yu Gao ◽  
...  

Abstract In deep-water drilling, the drilling fluid is affected by the alternating temperature field derived from the low temperature of the seawater and the high temperature of the formation. The complicated wellbore temperature and pressure environments make the prediction of rheological properties of the drilling fluid difficult. In this study, the rheological properties of water-based drilling fluid in full temperature and pressure range of deep-water conditions were tested from 2 to 150 °C (35.6 to 302 °F) and 0.1 to 70 MPa (14.5 to 10000psi). The experiment was carried out by the OFI130-77 high temperature and high pressure rheometer. The experimental data were processed by multiple regression analysis method, and the mathematical model for predicting the apparent viscosity, plastic viscosity and yield point of water-based drilling fluid under high temperature and high pressure conditions was established. The experimental results show that when the temperature is lower than 65 °C (149 °F), the apparent viscosity and plastic viscosity of the water-based drilling fluid decrease significantly with increasing temperature. When the temperature is higher than 65 °C (149 °F), the apparent viscosity and plastic viscosity decrease slowly. Under low temperature conditions, the effect of pressure on the apparent viscosity and plastic viscosity of water-based drilling fluids is relatively significant. The calculated values of the prediction model have a good agreement with the experimental measurements. Compared with the traditional model, this prediction model has a significant improvement in the prediction accuracy in the low temperature section, which can provide a calculation basis for on-site application of deepwater drilling fluid.


Clay Minerals ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 1-11
Author(s):  
Jun Rui Zhang ◽  
Meng Dan Xu ◽  
Georgios E. Christidis ◽  
Chun Hui Zhou

AbstractThe addition of clay minerals in drilling fluids modifies the dispersion's viscosity. In this article, scientific advances related to the use of clays and clay minerals (bentonite, palygorskite, sepiolite and mixtures of clay minerals) in drilling fluids are summarized and discussed based on their specific structure, rheological properties, applications, prevailing challenges and future directions. The rheological properties of drilling fluids are affected by the temperature, type of electrolytes, pH and concentration of clay minerals. Bentonites are smectite-rich clays often used in drilling fluids, and their composition varies from deposit to deposit. Such variations significantly affect the behaviour of bentonite-based drilling fluids. Palygorskite is suitable for use in oil-based drilling fluids, but the gelation and gel structures of palygorskite-added drilling fluids have not received much attention. Sepiolite is often used in water-based drilling fluids as a rheological additive. Dispersions containing mixtures of clays including bentonite, kaolin, palygorskite and sepiolite are used in drilling fluids requiring specific features such as high-density drilling fluids or those used in impermeable slurry walls. In these cases, the surface chemistry–microstructure–property relationships of mixed-clay dispersions need to be understood fully. The prevailing challenges and future directions in drilling fluids research include safety, ‘green’ processes and high-temperature and high-pressure-resistant clay minerals.


2020 ◽  
pp. 114808
Author(s):  
Paulo C.F. da Câmara ◽  
Liszt Y.C. Madruga ◽  
Nívia do N. Marques ◽  
Rosangela C. Balaban

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinliang Liu ◽  
Fengshan Zhou ◽  
Fengyi Deng ◽  
Hongxing Zhao ◽  
Zhongjin Wei ◽  
...  

Abstract Most of bentonite used in modern drilling engineering is physically and chemically modified calcium bentonite. However, with the increase of drilling depth, the bottom hole temperature may reach 180 °C, thus a large amount of calcium bentonite used in the drilling fluid will be unstable. This paper covers three kinds of calcium bentonite with poor rheological properties at high temperature, such as apparent viscosity is greater than 45 mPa·s or less than 10 mPa·s, API filtration loss is greater than 25 mL/30 min, which are diluted type, shear thickening type and low-shear type, these defects will make the rheological properties of drilling fluid worse. The difference is attributed to bentonite mineral composition, such as montmorillonite with good hydration expansion performance. By adding three kinds of heat-resistant water-soluble copolymers Na-HPAN (hydrolyzed polyacrylonitrile sodium), PAS (polycarboxylate salt) and SMP (sulfomethyl phenolic resin), the rheological properties of calcium bentonite drilling fluids can be significantly improved. For example, the addition of 0.1 wt% Na-HPAN and 0.1 wt% PAS increased the apparent viscosity of the XZJ calcium bentonite suspension from 4.5 to 19.5 mPa·s at 180 °C, and the filtration loss also decreased from 20.2 to 17.8 mL.


Author(s):  
Khalil Rehman Memon ◽  
Aftab Ahmed Mahesar ◽  
Shahzad Ali Baladi ◽  
Muhannad Talib Sukar

The experimental study was conducted on rheological properties in laboratory to measure the integrity of cement slurry. Three samples were used and analyzed at different parameters to check the elasticity of cement slurry. Additives with various concentrations, i.e. silica fume % BWOC (Present by Weight on Cement) (15, 17, 19 and 21), dispersant % Wt (Percent Weight) (0.21, 0.26 and 0.31) and additional 1; % Wt of fluid losscontrol were used to improve the performance of the cement slurry at the temperature of 123oC. The results have shown that increase in the concentration of dispersants that have caused to decrease in the Plastic Viscosity (PV), Yield Point (YP) and GS (Gel Strength). The rheological properties of cement were improved with the addition of fluid loss control additive in 21 % BWOC (Present by Weight on Cement) silica fume increase the water quantity in cement slurry that improve its durability and to reduce the strength retrogression in High Temperature High Pressure (HTHP) environment. Results were achieved through HTHP OFITE Viscometer (Model 1100).


Sign in / Sign up

Export Citation Format

Share Document