Pore-Scale Investigations on the Dynamics of Gravity-Driven Steam-Displacement Process for Heavy-Oil Recovery and Development of Residual Oil Saturation: A 2D Visual Analysis

SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 1943-1959 ◽  
Author(s):  
Francisco J. Argüelles-Vivas ◽  
Tayfun Babadagli

Summary The dynamics of a gravity-driven injection process for heavy-oil recovery at the pore scale and the mechanisms leading to the formation of residual oil saturation (ROS) were investigated. The 10 × 15-cm and 5 × 5-cm 2D visual sandpack models (a single layer of sintered microscale glass beads) were prepared and placed into a transparent vacuum chamber to prevent heat loss. The processes were recorded with a high-speed camera to obtain visual data at the pore scale. This process represents the lateral spreading of the steam chamber (half symmetric chamber growth) during steam-assisted gravity drainage (SAGD) for heavy-oil recovery. Oil-trapping mechanisms yielding to the formation of ROS were described and analyzed because of (1) lateral expansion, (2) simultaneous vertical and lateral expansion, (3) pore and particle size, (4) heterogeneities (pore- and particle-size distribution), and (5) wettability. Attention was also given to the ceiling region of the steam chamber and its interaction with the mobilized region at the lateral boundaries of the chamber.

2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


1983 ◽  
Vol 23 (03) ◽  
pp. 417-426 ◽  
Author(s):  
Philip J. Closmann ◽  
Richard D. Seba

Abstract This paper presents results of laboratory experiments conducted to determine the effect of various parameters on residual oil saturation from steamdrives of heavy-oil reservoirs. These experiments indicated that remaining oil saturation, both at steam breakthrough and after passage of several PV of steam, is a function of oil/water viscosity ratio at saturated steam conditions. Introduction Considerable attention has been given to thermal techniques for stimulating production of underground hydrocarbons, particularly the more viscous oils production of underground hydrocarbons, particularly the more viscous oils and tars. Steam injection has been studied as one means of heating oil in place, reducing its viscosity, and thus making its displacement easier. place, reducing its viscosity, and thus making its displacement easier. A number of investigators have measured residual oil saturations remaining in the steam zone. Willman et al. also analyzed the steam displacement process to account for the oil recoveries observed. A number of methods have been developed to calculate the size of the steam zone and to predict oil recoveries by application of Buckley-Leverett theory, including the use of numerical simulation. The work described here was devoted to an experimental determination of oil recovery by steam injection in linear systems. The experiments were unscaled as far as fluid flow rates, gravity forces, and heat losses were concerned. Part of the study was to determine recoveries of naturally occurring very viscous tars in a suite of cores containing their original oil saturation. The cores numbered 95, 140, and 143 are a part of this group. Heterogeneities in these cores, however, led to the extension of the work to more uniform systems, such as sandpacks and Dalton sandstone cores. Our interest was in obtaining an overall view of important variables that affected recovery. In particular, because of the significant effect of steam distillation, most of the oils used in this study were chosen to avoid this factor. We also studied the effect of pore size on the residual oil saturation. As part of this work, we investigated the effect of the amount of water flushed through the system ahead of the steam front in several ways:the production rate was varied by a factor of four,the initial oil saturation was varied by a factor of two, andthe rate of heat loss was varied by removing the heat insulation from the flow system. Description of Apparatus and Experimental Technique Two types of systems were studied: unconsolidated sand and consolidated sandstone. The former type was provided by packing a section of pipe with 50–70 mesh Ottawa sand. Most runs on this type of system were in an 18-in. (45.72-cm) section of 1 1/2 -in. (3.8 1 -cm) diameter pipe, although runs on 6-in. (15.24-cm) and 5-ft (152.4-cm) lengths were also included. Consolidated cores 9 to 13 in. (22.86 to 33.02 cm) long and approximately 2 1/4 in. (5.72 cm) in diameter were sealed in a piece of metal pipe by means of an Epon/sand mixture. A photograph of two 9-in. (22.86-cm) consolidated natural cores (marked 95 and 143) from southwest Missouri, containing original oil, is shown as Fig. 1. In all steamdrive runs, the core was thermally insulated to reduce heat loss, unless the effect of heat loss was specifically being studied. Flow was usually horizontal except for the runs in which the effects of flushing water volume and of unconsolidated-sand pore size were examined. Micalex end pieces were used on the inlet end in initial experiments with consolidated cores to reduce heat leakage from the steam line to the metal jacket on the outside of the core. During most runs, however, the entire input assembly eventually became hot. SPEJ p. 417


2013 ◽  
Vol 40 (3) ◽  
pp. 409-412 ◽  
Author(s):  
Yujun LI ◽  
Fangxiang REN ◽  
Liqiang YANG ◽  
Dasheng ZHOU ◽  
Xin TIAN

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Yanan Ding ◽  
Sixu Zheng ◽  
Xiaoyan Meng ◽  
Daoyong Yang

In this study, a novel technique of low salinity hot water (LSHW) injection with addition of nanoparticles has been developed to examine the synergistic effects of thermal energy, low salinity water (LSW) flooding, and nanoparticles for enhancing heavy oil recovery, while optimizing the operating parameters for such a hybrid enhanced oil recovery (EOR) method. Experimentally, one-dimensional displacement experiments under different temperatures (17 °C, 45 °C, and 70 °C) and pressures (about 2000–4700 kPa) have been performed, while two types of nanoparticles (i.e., SiO2 and Al2O3) are, respectively, examined as the additive in the LSW. The performance of LSW injection with and without nanoparticles at various temperatures is evaluated, allowing optimization of the timing to initiate LSW injection. The corresponding initial oil saturation, production rate, water cut, ultimate oil recovery, and residual oil saturation profile after each flooding process are continuously monitored and measured under various operating conditions. Compared to conventional water injection, the LSW injection is found to effectively improve heavy oil recovery by 2.4–7.2% as an EOR technique in the presence of nanoparticles. Also, the addition of nanoparticles into the LSHW can promote synergistic effect of thermal energy, wettability alteration, and reduction of interfacial tension (IFT), which improves displacement efficiency and thus enhances oil recovery. It has been experimentally demonstrated that such LSHW injection with the addition of nanoparticles can be optimized to greatly improve oil recovery up to 40.2% in heavy oil reservoirs with low energy consumption. Theoretically, numerical simulation for the different flooding scenarios has been performed to capture the underlying recovery mechanisms by history matching the experimental measurements. It is observed from the tuned relative permeability curves that both LSW and the addition of nanoparticles in LSW are capable of altering the sand surface to more water wet, which confirms wettability alteration as an important EOR mechanism for the application of LSW and nanoparticles in heavy oil recovery in addition to IFT reduction.


Author(s):  
Mingkun Zhai ◽  
Qingjun Du ◽  
Yueliang liu ◽  
Guanghuan Wu ◽  
Jianfang Sun ◽  
...  

SPE Journal ◽  
2020 ◽  
pp. 1-16
Author(s):  
Maria Plata ◽  
Jonathan Bryan ◽  
Apostolos Kantzas

Summary The cyclic solvent injection (CSI) process has recently shown to be a promising method for enhanced heavy oil recovery in Canada. Laboratory testing is often run before development of field pilots to assess the effect of parameters, such as solvent choice and process conditions, on the CSI response. However, differences between laboratory results vs. field applications have been observed. CSI laboratory studies work for only two to three cycles due to low incremental oil in subsequent cycles, whereas field pilots continue for years over multiple cycles. This experimental study is intended to capture the production mechanisms responsible for heavy oil production in CSI. Primary production and CSI tests were conducted using sandpack models saturated with live heavy oil of 9530 mPa·s viscosity. The experiments were conducted in horizontal and vertical mode injection at high- and low-pressure depletion rates using two solvent mixtures of CH4 and C3H8. The sandpacks were scanned after every cycle to analyze the evolution of gas and oil saturations using computed tomography (CT). Three cores were used to study the effect of several parameters: gravity forces, pressure depletion rate, solvent composition, and initial oil saturation on the performance of CSI processes. CSI cycles run after primary production in horizontal systems produced negligible incremental oil for both slow and fast drawdown rates due to the large void space and high free gas saturation inhibiting the pressure buildup to push the solvent-diluted oil. These CSI experiments were only initially successful in dead oil systems, in which the initial oil saturation was higher and appropriate pressure gradient was generated through fast depletion rates. During the vertical alignment, CSI cycles exhibited higher incremental oil recovery per cycle. Slow depletion cycles were more efficient in terms of pressure and incremental recovery per cycle; however, faster depletion cycles performed better as a function of time. These results are more in line with the repeated recoveries measured over multiple cycles in field CSI pilot studies. More volume of diluted oil was drained out of the core when the solvent mixture with higher propane (C3H8) content was injected. These results demonstrate the importance of gravity drainage in the CSI process and its significance on successful oil recovery rates. This study illustrates the limitations of previous horizontal laboratory tests and shows an improved test configuration for modeling and prediction of the improved response observed in CSI pilots.


Sign in / Sign up

Export Citation Format

Share Document