Application of Bespoke Well Completion Architecture and Integrated Surveillance in the Development and Production of a High Saline Gas Field - UK North Sea

2018 ◽  
Author(s):  
Gabriel Otaru ◽  
Syed Haider ◽  
Anna Nilsen
Keyword(s):  

2013 ◽  
Vol 37 ◽  
pp. 4804-4817 ◽  
Author(s):  
Owain Tucker ◽  
Martin Holley ◽  
Richard Metcalfe ◽  
Sheryl Hurst


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.



2003 ◽  
Vol 20 (1) ◽  
pp. 691-698
Author(s):  
M. J. Sarginson

AbstractThe Clipper Gas Field is a moderate-sized faulted anticlinal trap located in Blocks 48/19a, 48/19c and 48/20a within the Sole Pit area of the southern North Sea Gas Basin. The reservoir is formed by the Lower Permian Leman Sandstone Formation, lying between truncated Westphalian Coal Measures and the Upper Permian evaporitic Zechstein Group which form source and seal respectively. Reservoir permeability is very low, mainly as a result of compaction and diagenesis which accompanied deep burial of the Sole Pit Trough, a sub basin within the main gas basin. The Leman Sandstone Formation is on average about 715 ft thick, laterally heterogeneous and zoned vertically with the best reservoir properties located in the middle of the formation. Porosity is fair with a field average of 11.1%. Matrix permeability, however, is less than one millidarcy on average. Well productivity depends on intersecting open natural fractures or permeable streaks within aeolian dune slipface sandstones. Field development started in 1988. 24 development wells have been drilled to date. Expected recoverable reserves are 753 BCF.



1991 ◽  
Vol 14 (1) ◽  
pp. 387-393 ◽  
Author(s):  
C. R. Garland

AbstractThe Amethyst gas field was discovered in 1970 by well 47/13-1. Subsequently it was appraised and delineated by 17 wells. It consists of at least five accumulations with modest vertical relief, the reservoir being thin aeolian and fluviatile sandstones of the Lower Leman Sandstone Formation. Reservoir quality varies from poor to good, high production rates being attained from the aeolian sandstones. Seismic interpretation has involved, in addition to conventional methods, the mapping of several seismic parameters, and a geological model for the velocity distribution in overlying strata.Gas in place is currently estimated at 1100 BCF, with recoverable reserves of 844 BCF. The phased development plan envisages 20 development wells drilled from four platforms, and first gas from the 'A' platforms was delivered in October 1990. A unitization agreement is in force between the nine partners, with a technical redetermination of equity scheduled to commence in 1991.



2021 ◽  
Author(s):  
Bastien Dupuy ◽  
Benjamin Emmel ◽  
Simone Zonetti

<p>More than 750 wildcat wells have been drilled in the Norwegian North Sea since 1966. Some of these wells could pose a risk for the environment, climate, and future H<sub>2</sub> and CO<sub>2</sub> storage projects by being preferred leakage paths for subsurface- and stored- gases (e.g., CH<sub>4</sub>, CO<sub>2 </sub>and/or H<sub>2</sub>). To ensure well integrity, these wells were secured by cement framing the well casing, and by building cement plugs at crucial positions in the well path before abandoning the well. However, in an early stage of exploration the geology of the subsurface was relatively uncertain, and the requirements for plug placing and how to abandon a well were not established and regulated. We analysed data relevant for the quality of a Plugging and Abandonment (P&A) work done on old exploration wells (1979 to 2003) from the Troll gas and oil field in the Norwegian North Sea. The data were extracted from public available well completion reports and the webpage of the Norwegian Petroleum Directorate. The dataset was analysed regarding their availability, plausibility and evaluated towards the present P&A regulations and geological knowledge for offshore Norway. Based on 12 criteria including reporting to the authorities, volumetric assessment of used cement quantities, position and length of the plugs in relation to reservoir- cap-rocks petrophysical conditions, and verification of the cementing job, a final P&A ranking of 31 exploration wells was established.</p><p>Parts of this data were used to build realistic numerical models of P&A'ed well to simulate electromagnetic responses using the finite element software COMSOL Multiphysics. Taking advantage of a dedicated implementation of low frequency ElectroMagnetics (EM), including effective formulations for thin electrical layers, it was possible to study the response of well components to external EM fields, both for the purpose of well detection and well monitoring. Results from the numerical models can be used as benchmark models in a realistic field scale well integrity monitoring approach.</p><p>In our presentation we will show results from the TOPHOLE project including realistic field distributions for different representative well configurations, examples of well detection and monitoring signals, and the ranking evaluation results.</p><p>Acknowledgments: This work is performed with support from the Research Council of Norway (TOPHOLE project Petromaks2-KPN 295132) and the NCCS Centre (NFR project number 257579/E20).</p>





1991 ◽  
Vol 14 (1) ◽  
pp. 117-126
Author(s):  
J. BREWSTER

AbstractThe Frigg Field was the first giant gas field to be discovered in the northern North Sea. Its position on the boundary line between the UK and Norway called for international cooperation at an early stage in development. The Lower Eocene reservoir sands have extremely good poroperm characteristics but the heterogeneities within the sands control the water influx from the immense Eocene and Palaeocene aquifers below.



1976 ◽  
Vol 16 (1) ◽  
pp. 107
Author(s):  
M. A. Delbaere

Oilfield operators have always looked for ways of reducing the costs of oil and gas development projects and especially when investment costs were critical to project economics. Tubingless completions have evolved over the last 30 years in North America to fill the need for reduced investment costs particularly in the case of fields with either limited reserves or limited profitability.Tubingless completions basically utilise small diameter tubulars to function as both production casing and flowstring. The tubulars are cemented in the borehole, not to be removed or recovered until the field is depleted and/or the well abandoned. The technique is limited in application to those fields with no corrosion or wax or hydrate problems and with a limited requirement for reservoir stimulation and workovers. The greater the number of operations performed within the tubingless well bore the greater the risk of losing the well.The main benefits of tubingless completions are as follows:Reduction in development well completion costs.Marginally productive hydrocarbon zones can be completed and tested.Completion of individual gas zones of multi-pay wells within their own permanently segregated flowstrings at much lower capital and operating costs.The experience this far with Kincora gas field development wells indicates the tubingless completion method to be completely feasible for gas wells drilled in the Surat Basin and possibly in other areas of Australia.



1991 ◽  
Vol 14 (1) ◽  
pp. 503-508 ◽  
Author(s):  
Robert A. Lambert

AbstractThe Victor gas field lies in the Southern North Sea Gas Province on the eastern flank of the Sole Pit Basin. The field straddles Blocks 49/17 and 49/22, and is situated approximately 140 km off the Lincolnshire coast. Victor was discovered in April 1972 and is operated by Conoco (UK) Ltd on behalf of BP, Mobil and Statoil. The structure is an elongated tilted fault block, trending NW-SE. The reservoir sands are contained in the Leman Sandstone Formation (Rotliegendes Group) of Early Permian age, and consist mainly of stacked aeolian and fluvial sands with a gross thickness of 400-450 ft across the field. Porosities vary from 16-20%, with permeabilities ranging from 10 md to 1000 md in the producing zones. Initial gas in place is estimated at about 1.1 TCF with recoverable reserves of the order of 900 BCF. The field was brought on-stream in October 1984, and the five producing wells deliver, on average, 200 MMSCFD through the Viking Field 'B Complex' to the Conoco/BP terminal at Theddlethorpe in Lincolnshire



Sign in / Sign up

Export Citation Format

Share Document