Dynamic Fluid Diversion with Advanced Pressure Monitoring Technique – New Era of Multistage Refracturing in Conventional Reservoirs of Western Siberia (Russian)

Author(s):  
Alexey Borisenko ◽  
Sergey Parkhonyuk ◽  
Elena Danilevich ◽  
Arkadii Loginov ◽  
Kreso Butula ◽  
...  

Author(s):  
Alexey Borisenko ◽  
Sergey Parkhonyuk ◽  
Elena Danilevich ◽  
Arkadii Loginov ◽  
Kreso Butula ◽  
...  


2020 ◽  
Author(s):  
Alexey Borisenko ◽  
Sergey Parkhonyuk ◽  
Kirill Zotov ◽  
Roman Korkin ◽  
Nikita Vladimirovich Kiselev ◽  
...  


2020 ◽  
Author(s):  
Alexey Borisenko ◽  
Sergey Parkhonyuk ◽  
Kirill Zotov ◽  
Roman Korkin ◽  
Nikita Vladimirovich Kiselev ◽  
...  


2011 ◽  
Vol 27 (6) ◽  
pp. 623-629 ◽  
Author(s):  
Gretchen M. Ray ◽  
James J. Nawarskas ◽  
Joe R. Anderson


2021 ◽  
Vol 73 (03) ◽  
pp. 51-52
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199731, “Monitoring the Pulse of a Well Through Sealed Wellbore Pressure Monitoring: A Breakthrough Diagnostic With a Multibasin Case Study,” by Kyle Haustveit, SPE, Brendan Elliott, SPE, and Jackson Haffener, SPE, Devon Energy, et al., prepared for the 2020 SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4-6 February. The paper has not been peer reviewed. A pressure-monitoring technique using an offset sealed wellbore as a monitoring source has led to advancements in quantifying cluster efficiencies of hydraulic stimulations in real time. Sealed wellbore pressure monitoring (SWPM) is a low-cost, nonintrusive method used to evaluate and quantify fracture-growth rates and fracture-driven interactions during a hydraulic stimulation. The measurements can be made with only a surface pressure gauge on a monitor well. To date, more than 1,500 stages have been monitored using the technique. The complete paper reviews multiple SWPM case studies, collected from projects in the Anadarko and Permian Delaware basins; this synopsis will concentrate on the concepts behind, and the validation of, the technique. Introduction SWPM is performed on a well that acts as a closed system. The well cannot be connected to a formation through perforations or other types of access points; the casing must be sealed. Uncompleted wells can be used if the shallowest perforations are isolated from the formation. In an existing producing well, a plug must be set above the shallowest perforations to create a closed system from the top of the plug to surface where the pressure measurement is recorded. The wellbore should be filled with low-compressibility fluid (e.g., completion brine) to amplify the pressure response created during monitoring. Fractures intersecting the sealed wellbore cause local deformation, which results in a small volume reduction in the closed system (system being the fluid volume inside of the casing) and generates a discernible and distinct pressure response. Pressure can be recorded either using a surface gauge or a downhole gauge. Multiple sealed wellbores can be used as monitor wells for a single treatment well, allowing for a more-detailed understanding of fracture growth rates during a stimulation. The field execution of SWPM is simple and does not require any tools to enter the wellbore. A surface gauge provides the necessary data needed to evaluate the fracture interactions with the monitor wellbore. There is no need to alter zipper operations if sealed wellbores are available. The main restriction SWPM introduces to operations is the necessity to leave new wellbores, designated as monitors, unprepped by not opening toe sleeves or shooting perforations for Stage 1 until monitoring of the offset treatment wells is complete. Because the pressure response in the monitor well is a result of a fracture intersection at the wellbore, the method reduces the uncertainty related to the location of the monitor point commonly associated with other offset pressure-monitoring techniques.





Author(s):  
H.J.G. Gundersen

Previously, all stereological estimation of particle number and sizes were based on models and notoriously gave biased results, were very inefficient to use and difficult to justify. For all references to old methods and a direct comparison with unbiased methods see recent reviews.The publication in 1984 of the DISECTOR, the first unbiased stereological probe for sampling and counting 3—D objects irrespective of their size and shape, signalled the new era in stereology — and give rise to a number of remarkably simple and efficient techniques based on its distinct property: It is the only known way to obtain an unbiased sample of 3-D objects (cells, organelles, etc). The principle is simple: within a 2-D unbiased frame count or sample only cells which are not hit by a parallel plane at a known, small distance h.The area of the frame and h must be known, which might sometimes in itself be a problem, albeit usually a small one. A more severe problem may arise because these constants are known at the scale of the fixed, embedded and sectioned tissue which is often shrunken considerably.



Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.



Sign in / Sign up

Export Citation Format

Share Document