A Comprehensive Review Heavy Oil Reservoirs, Latest Techniques, Discoveries, Technologies and Applications in the Oil and Gas Industry

Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Minh Tran ◽  
Elsayed Abdelfatah ◽  
Bao Jia ◽  
...  
Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
Author(s):  
Jesus Manuel Felix Servin ◽  
Hala A. Al-Sadeg ◽  
Amr Abdel-Fattah

Abstract Tracers are practical tools to gather information about the subsurface fluid flow in hydrocarbon reservoirs. Typical interwell tracer tests involve injecting and producing tracers from multiple wells to evaluate important parameters such as connectivity, flow paths, fluid-fluid and fluid-rock interactions, and reservoir heterogeneity, among others. The upcoming of nanotechnology enables the development of novel nanoparticle-based tracers to overcome many of the challenges faced by conventional tracers. Among the advantages of nanoparticle-based tracers is the capability to functionalize their surface to yield stability and transportability through the subsurface. In addition, nanoparticles can be engineered to respond to a wide variety of stimuli, including light. The photoacoustic effect is the formation of sound waves following light absorption in a material sample. The medical community has successfully employed photoacoustic nanotracers as contrast agents for photoacoustic tomography imaging. We propose that properly engineered photoacoustic nanoparticles can be used as tracers in oil reservoirs. Our analysis begins by investigating the parameters controlling the conversion of light to acoustic waves, and strategies to optimize such parameters. Next, we analyze different kind of nanoparticles that we deem potential candidates for our subsurface operations. Then, we briefly discuss the excitation sources and make a comparison between continuous wave and pulsed sources. We finish by discussing the research gaps and challenges that must be addressed to incorporate these agents into our operations. At the time of this writing, no other study investigating the feasibility of using photoacoustic nanoparticles for tracer applications was found. Our work paves the way for a new class of passive tracers for oil reservoirs. Photoacoustic nanotracers are easy to detect and quantify and are therefore suitable for continuous in-line monitoring, contributing to the ongoing real-time data efforts in the oil and gas industry.


2020 ◽  
pp. 57-68
Author(s):  
М.М. Manukyan

The article is devoted to the study of various areas for the improvement of ultraviscous oil technologies in the Samara region. Promising technologies, as well as technologies that have already been applied in the oil and gas industry of the Samara region were considered. New technologies in the oil and gas industry in the region were identified. The analysis of methods used for the development of heavy crude oil in a sessile plate - the thermal production method (THDP or SAGD), as well as the method of dynamic stimulation of the formation with wave energy - was carried out.


2021 ◽  
Author(s):  
Ethar H. K. Alkamil ◽  
Ammar A. Mutlag ◽  
Haider W. Alsaffar ◽  
Mustafa H. Sabah

Abstract Recently, the oil and gas industry faced several crucial challenges affecting the global energy market, including the Covid-19 outbreak, fluctuations in oil prices with considerable uncertainty, dramatically increased environmental regulations, and digital cybersecurity challenges. Therefore, the industrial internet of things (IIoT) may provide needed hybrid cloud and fog computing to analyze huge amounts of sensitive data from sensors and actuators to monitor oil rigs and wells closely, thereby better controlling global oil production. Improved quality of service (QoS) is possible with the fog computing, since it can alleviate challenges that a standard isolated cloud can't handle, an extended cloud located near underlying nodes is being developed. The paradigm of cloud computing is not sufficient to meet the needs of the already extensively utilized IIoT (i.e., edge) applications (e.g., low latency and jitter, context awareness, and mobility support) for a variety of reasons (e.g., health care and sensor networks). Couple of paradigms just like mobile edge computing, fog computing, and mobile cloud computing, have arisen in recently to meet these criteria. Fog computing helps to optimize services and create better user experiences, such as faster responses for critical, time-sensitive needs. At the same time, it also invites problems, such as overload, underload, and disparity in resource usage, including latency, time responses, throughput, etc. The comprehensive review presented in this work shows that fog devices have highly constrained environments and limited hardware capabilities. The existing cloud computing infrastructure is not capable of processing all data in a centralized manner because of the network bandwidth costs and response latency requirements. Therefore, fog computing demonstrated, instead of edge computing, and referred to as "the enabling technologies allowing computation to be performed at the edge of the network, on downstream data on behalf of cloud services and upstream data on behalf of IIoT services" (Shi et al., 2016) is more effective for data processing when data sources are close together. A review of fog and cloud computing literature suggests that fog is better than cloud computing because fog computing performs time-dependent computations better than cloud computing. The cloud is inefficient for latency-sensitive multimedia services and other time-sensitive applications since it is accessible over the internet, like the real-time monitoring, automation, and optimization of petroleum industry operations. As a result, a growing number of IIoT projects are dispersing fog computing capacity throughout the edge network as well as through data centers and the public cloud. A comprehensive review of fog computing features is presented here, with the potential of using it in the petroleum industry. Fog computing can provide a rapid response for applications through preprocess and filter data. Data that has been trimmed can then be transmitted to the cloud for additional analysis and better service delivery.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingmin Li ◽  
Changchun Chen ◽  
Zhangcong Liu ◽  
Yongbin Wu ◽  
Xiaoxing Shi

Nowadays, extra heavy oil reservoirs in the Orinoco Heavy-Oil-Belt in Venezuela are exploited via cold production process, which present different production performance in well productivity and primary recovery factor. The purpose of this study is to investigate the causes for such differences with the aspect of foamy oil mechanism. Two typical oil samples were adopted from a shallow reservoir in western Junìn region and a middepth reservoir in eastern Carabobo region in the Belt, respectively. A depletion test was conducted using 1D sand-pack with a visualized microscopic flow observation installation for each of the oil samples under simulated reservoir conditions. The production performance, the foamy oil behaviour, and the oil and gas morphology were recorded in real time during the tests. The results indicated that the shallow heavy oil reservoir in the Belt presents a weaker foamy oil phenomenon when compared with the middepth one; its foamy oil behaviour lasts a shorter duration with a smaller scope, with bigger bubble size and less bubble density. The difference in foamy oil behaviour for those two types of heavy oil reservoir is caused by the difference in reservoir pressure, solution GOR, asphaltene content, etc. Cold production presents obvious features of three stages under the action of strong foamy oil displacement mechanism for the middepth heavy oil reservoir, which could achieve a more favourable production performance. In the contrary, no such obvious production characteristics for the shallow heavy oil reservoir are observed due to weaker foamy oil behaviour, and its primary recovery factor is 9.38 percent point lower than which of the middle heavy oil reservoirs.


1981 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
D. R. Pettigrew ◽  
J. C. Bjornson ◽  
Elma K. Spady

Three Alberta lawyers, representing different corporate entities in the oil and gas industry, discuss the approach to and treatment of technology de veloped in relation to oil sands, heavy oil and frontier exploration activ ities. Part One provides an introduction to some of the legal challenges created by new developments in resource technology, and examines the experience of Petro-Canada in its frontier operations. Part Two focusses upon the Syncrude project, and the unique problems to which it has given rise. Part Three discusses the role of the Alberta Oil Sands Technology and Research Authority.


2019 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Yildiray Palabiyik ◽  
Dike Putra ◽  
Ahmet Asena ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1389-1399 ◽  
Author(s):  
Mortadha T. Alsaba ◽  
Mohammed F. Al Dushaishi ◽  
Ahmed K. Abbas

AbstractWith the increased attention toward nanotechnology and their innovative use for different industries including but not limited to food, biomedical, electronics, materials, etc, the application of nanotechnology or nanoparticles in the oil and gas industry is a subject undergoing intense study by major oil companies, which is reflected through the huge amount of funds invested on the research and development, with respect to the nanotechnology. Nanotechnology has been recently investigated extensively for different applications in the oil and gas industry such as drilling fluids and enhanced oil recovery in addition to other applications including cementing and well stimulation. In this paper, comprehensive literature was conducted to review the different applications of nanotechnology in the oil and gas industry. A summary of all nanoparticles used along with a detailed analysis of their performance in improving the targeted parameters is comprehensively presented. The main objective of this review was to provide a comprehensive summary of the different successful applications of nanotechnology and its associated challenges, which could be very helpful for future researches and applications.


Sign in / Sign up

Export Citation Format

Share Document