scholarly journals A comprehensive review of nanoparticles applications in the oil and gas industry

2020 ◽  
Vol 10 (4) ◽  
pp. 1389-1399 ◽  
Author(s):  
Mortadha T. Alsaba ◽  
Mohammed F. Al Dushaishi ◽  
Ahmed K. Abbas

AbstractWith the increased attention toward nanotechnology and their innovative use for different industries including but not limited to food, biomedical, electronics, materials, etc, the application of nanotechnology or nanoparticles in the oil and gas industry is a subject undergoing intense study by major oil companies, which is reflected through the huge amount of funds invested on the research and development, with respect to the nanotechnology. Nanotechnology has been recently investigated extensively for different applications in the oil and gas industry such as drilling fluids and enhanced oil recovery in addition to other applications including cementing and well stimulation. In this paper, comprehensive literature was conducted to review the different applications of nanotechnology in the oil and gas industry. A summary of all nanoparticles used along with a detailed analysis of their performance in improving the targeted parameters is comprehensively presented. The main objective of this review was to provide a comprehensive summary of the different successful applications of nanotechnology and its associated challenges, which could be very helpful for future researches and applications.

Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


2018 ◽  
Vol 3 (4) ◽  
pp. 30
Author(s):  
Maria João Mimoso ◽  
Clara da Conceição de Sousa Alves ◽  
Diogo Filipe Dias Gonçalves

Since the beginning of the 19th century, we have assisted major proliferation of the oil and gas industry. This phenomenon of exponential growth is due to the fact that oil companies hold the world’s oil monopoly on the extraction, processing and commercialization. Therefore, as being one of the most influential sectors in the world, is crucial to strictly regulate how oil and gas contracts concerns the potential environmental and social impacts arising from the conduct of petroleum operations and how such behavior affects the human rights. As a matter of fact, the social issues field is an emerging area, and despite such importance, oil contracts do not often deal with them in great detail, corresponding to an actual emptiness of the human rights provisions. In terms of responsibly, oil companies, have an inalienable obligation to ensure that their actions do not violate human rights or contribute for their violation. This study aims to trace a detailed analysis of the impact of the oil and gas agreements in human rights. In order to fully comprehend the deep effects of this industry, we will examine, in detail, numerous of published oil and gas agreements, as well as, decode which are the real standards and practices accepted by this industry. We will use a deductive and speculative reasoning. We will try to demonstrate how incipient and short protection is given to human rights and what responsible conducts must urgently be developed.


2019 ◽  
Vol 2019 (4) ◽  
pp. 160-175
Author(s):  
Anna Popova

The author studies environmental insurance in nature management as a lever of management measures to prevent and eliminate environmental pollution by oil products during their transportation and oil fields development. The research aims to develop recommendations for environmental risks insurance in Russian oil and gas industry on the basis of economic and mathematical model that allows to estimate the scale of environmental pollution by oil products. Such methods as system and comparative analysis, expert assessments, forecasting, modeling used in this work helped the author to identify Russian environmental insurance features; to propose a method for solving the problem concerning the lack of statistical data on the frequency and scale of accidents and the environmental damage magnitude by mathematical modeling of the accident, which allows to estimate the radius and depth of the underlying surface pollution. These developments will help insurers to make more adequate insurance premiums and tariffs, as well as to improve the underwriting procedure for unique oil and gas projects. But in order for the obtained achievements to find their application, it is necessary to have legislation obliging oil companies to compensate for environmental damage, and due to the scale of such damage, oil companies will be obliged to insure the relevant risks.


2016 ◽  
Vol 9 (8) ◽  
pp. 37
Author(s):  
Savio De Luna Pinto ◽  
Aline Alves de Andrade ◽  
Roselaine Cristina Borges ◽  
Celso Machado Jr.

<p>This article identifies the profile of the boards of the ten largest companies in the Oil and Gas industry on NASDAQ and the variation of their stocks. The research contributes to the study developed by Andrade (2009) which established the relationship between corporate governance and market value in Brazil. Additionally, Connell and Cramer (2010) studied the advice of Ireland companies, point out the importance of analyzing the board's composition and its influence on the organization's performance in the stock market in different segments. The method was a qualitative analysis of the board, and the correlation of the board with the variation and point that studies in a number of other countries generally fail to report any significant association between board composition and firm performance. The research information shows that the best performing companies have common characteristics: advice with fewer members; age diversity of members and specifically trained in master. These characteristics capable of being incorporated by the companies and that give power to favorable conditions for companies, for shareholders and for society in general.</p>


2010 ◽  
Author(s):  
Kirsty Walker ◽  
Chantal Smulders ◽  
Trond Schei ◽  
Aud Nistov ◽  
Reagan Wallace James

2013 ◽  
Vol 13 (1) ◽  
pp. 83-97 ◽  
Author(s):  
A.M. de Britto Pires ◽  
F. Lima Cruz Teixeira ◽  
H.N. Hastenreiter Filho ◽  
S.R. Góes Oliveira

Since 1996, Petróleo Brasileiro S.A. – Petrobras, the biggest oil company in Latin America, has been supporting a programme for the design, customization, and implementation of tri-lateral collaborative arrangements called the Centres and Networks of Excellence (CNE) Programme, in areas which are critical to the company's competitiveness. This programme is aligned with the Open Innovation proposal, as it is designed to intensify the inflows and outflows of information and technology, from internal and external sources, in the RD&I activities of the participating organizations. This article presents qualitative research based on the case study of the Centre of Excellence (CE) in Engineering, Procurement and Construction (EPC), a hybrid organization which brings together oil companies, EPC companies, universities and technical schools, government entities, professional associations and industry bodies, in an effort to make the Brazilian EPC sector related to the oil and gas industry sustainable and competitive worldwide. The principal objective was to investigate the governance elements and managerial mechanisms that support or hinder collaboration among the parties. The work included the identification of collaborative activities within the organization and aspects of trust. Qualitative data was collected by means of in-depth interviews with staff and executive members of the CE-EPC. The case study highlighted the potential of the method to help set up hybrid collaborative initiatives among parties from different institutional spheres. However, the research identified some barriers to the full accomplishment of CNE. A weak culture of collaboration was the greatest difficulty found in the CE-EPC case. The lack of positive previous cooperation experiences together with a lifelong practice of market relations make it hard to get members to focus attention on a new work logic. Yet, despite the high asymmetry among members and the weak network culture, the results indicate that the CE-EPC has accomplished significant positive results in twenty months of operation and that its internal environment is supportive and favours the improvement and consolidation of the organization.


Sign in / Sign up

Export Citation Format

Share Document