The Effects of Filter-Cake Buildup and Time-Dependent Properties on the Stability of Inclined Wellbores

SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 1010-1028 ◽  
Author(s):  
Minh H. Tran ◽  
Younane N. Abousleiman ◽  
Vinh X. Nguyen

Summary The effects of filter-cake buildup and/or filter-cake-property variation with time on wellbore stability have been plaguing the industry. The increasing use of lost-circulation materials (LCMs) in recent years for wellbore strengthening in weak and/or depleted formations necessitates models that can predict these effects. However, the complexities of effective-stress and pore-pressure evolution around the borehole while drilling, coupled with the transient variation of mud-filtration properties, have delayed such modeling efforts. In this paper, the analytical solutions for the time-dependent effects of mudcake buildup and mudcake properties on the wellbore stresses and formation pore pressure, and thus the safe-drilling-mud-weight window, are derived. The transient effects of mudcake buildup and mudcake buildup coupled with its permeability reduction during filtration on the safe-drilling-mudweight window are illustrated through numerical examples. The results showed that the safe-mudweight windows were greatly affected by the buildup of filter cake and its permeability variation. For example, the analysis for filter-cake buildup with cake permeability of 10–2 md showed that the safe-mudweight window was widened by 0.5 g/cc after 2.5 hours post-excavation when compared to the case of a wellbore without mudcake. On the other hand, a lower mudcake permeability of 10–3 md widened the mudweight window by as much as 1 g/cc. Last but not least, the analyses revealed that even for mudcake permeability as low as 10–3 md, neglecting the permeable nature of the mudcake can result in overestimation of the safe-drilling-mudweight window.

SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1305-1316 ◽  
Author(s):  
Amin Mehrabian ◽  
Dale E. Jamison ◽  
Sorin Gabriel Teodorescu

Summary Lost circulation, a major complication of drilling operations, is commonly treated by adding materials of various types, shapes, and particle-size distributions to the drilling mud. Generally known as wellbore strengthening, this technique often helps the operator to drill with higher mud gradients compared with that suggested by the conventional fracture-gradient or borehole-fracture-limit analysis. The underlying mechanisms through which a wellbore is strengthened, however, are not yet fully understood. This study explores these wellbore-strengthening mechanisms through an analytical solution to the related solid-mechanics model of the wellbore and its adjacent fractures. The provided solution is generic in that it takes into account the mechanical interaction of multiple fractures between one another and the wellbore under an arbitrary state of in-situ stress anisotropy. An additional generality in this solution arises from its unification and quantification of some solid-mechanics aspects of the previous hypotheses that have been published on the subject—i.e., stress cage, as well as the tip isolation and its effect on the fracture-propagation resistance. In relation to the stress-cage theory, the study investigates the wellbore-hoop-stress enhancement upon fracturing. The findings indicate that the induced hoop stress is significant at some regions near the wellbore, especially in the general vicinity of the fracture(s). However, given the strong dependency of wellbore stress on the mechanical and geometrical parameters of the problem, generalizing these results to the entire region around the wellbore may not always be trivial. The study also examines tip isolation, a common feature of fracture-closure and propagation-resistance hypotheses, through the analysis of partially reduced fracture pressures and a breakdown criterion, defined by the critical stress-intensity factor of the formation rock.


Author(s):  
Tianshou Ma ◽  
Nian Peng ◽  
Ping Chen ◽  
Yang Liu

Supercharging in the vicinity of a borehole is an important factor that affects formation damage and drilling safety, and the filter cake growth process has a significant impact on supercharging in the vicinity of the borehole. However, existing models that predict pore pressure distribution overlook dynamic filter cake growth. Thus, an analytical supercharging model was developed that considers time-dependent filter cake effects, and this model was verified using a two-dimensional numerical model. The influences of filter cake, formation, and filtrate properties on supercharging were investigated systematically. The results indicate that time-dependent filter cake effects have significant influence on supercharging. Supercharging increases in the early stage but decreases over time because of the dynamic growth of filter cake, and the supercharging magnitude decreases along the radial direction. Because of filter cake growth, the magnitude of supercharging falls quickly across the filter cake, and the decreased magnitude of pore pressure caused by the filter cake increases. Supercharging in low-permeability formations is more obvious and the faster rate of filter cake growth, a lower filtrate viscosity and faster reduction rate of filter cake permeability can help to weaken supercharging. The order of importance of influencing factors on supercharging is overbalance pressure > formation permeability > formation porosity ≈ filtrate viscosity > filter cake permeability attenuation coefficient > initial filter cake permeability control ratio > filter cake growth coefficient > filter cake porosity. To alleviate supercharging in the vicinity of the borehole, adopting drilling fluids that allow a filter cake to form quickly, optimizing drilling fluid with a lower filtrate viscosity, keeping a smaller overbalance pressure, and precise operation at the rig site are suggested for low-permeability formations during drilling.


2021 ◽  
Author(s):  
Irfan Kurawle ◽  
Ansgar Dieker ◽  
Adriana Soltero ◽  
Svetlana Nafikova

Abstract BP returned to Caspian deepwater exploratory drilling in 2019. The exploration well was drilled on the Shafag-Asiman structure in water depths greater than 2,000 ft. Well challenges included high shallow water flow (SWF) risk with multiple re-spuds on the nearest offset, lost circulation due to complex wellbore geometry combined with a narrow pore and fracture gradient window, and uncertainty in pore pressure prediction in abnormally pressured formations with a new depositional model. In addition, a well total depth more than 23,000 ft, eight string casing design and bottom-hole pressures greater than 20,000 psi presented a truly modern-day challenge to well integrity. A six-month planning phase for the cementing basis of design concluded by delivering slurry designs capable of combating SWF, qualified by variable-speed rotational gel strength measurement. Engineered lost circulation with selective placement of wellbore strengthening materials in combination with cement and mechanical barriers to provide isolation and integrity for the life of the well. Exhaustive pilot testing to account for changes required a cement design based on pore pressure variation and comprehensive modeling for hydraulics, centralizer placement, and mud displacement. This was complemented by a custom centralizer testing process specifically designed to simulate forces exerted in wells with similar complexity. Long-term effects on cement were evaluated, not only for placement but also for future operations including pressure and temperature cycles during wellbore construction or abandonment.


2021 ◽  
Author(s):  
Khaqan Khan ◽  
Mohammad Altwaijri ◽  
Sajjad Ahmed

Abstract Drilling oil and gas wells with stable and good quality wellbores is essential to minimize drilling difficulties, acquire reliable openhole logs data, run completions and ensure well integrity during stimulation. Stress-induced compressive rock failure leading to enlarged wellbore is a common form of wellbore instability especially in tectonic stress regime. For a particular well trajectory, wellbore stability is generally considered a result of an interplay between drilling mud density (i.e., mud weight) and subsurface geomechanical parameters including in-situ earth stresses, formation pore pressure and rock strength properties. While role of mud system and chemistry can also be important for water sensitive formations, mud weight is always a fundamental component of wellbore stability analysis. Hence, when a wellbore is unstable (over-gauge), it is believed that effective mud support was insufficient to counter stress concentration around wellbore wall. Therefore, increasing mud weight based on model validation and calibration using offset wells data is a common approach to keep wellbore stable. However, a limited number of research articles show that wellbore stability is a more complex phenomenon affected not only by geomechanics but also strongly influenced by downhole forces exerted by drillstring vibrations and high mud flow rates. Authors of this paper also observed that some wells drilled with higher mud weight exhibit more unstable wellbore in comparison with offset wells which contradicts the conventional approach of linking wellbore stability to stresses and rock strength properties alone. Therefore, the objective of this paper is to analyze wellbore stability considering both geomechanical and drilling parameters to explain observed anomalous wellbore enlargements in two vertical wells drilled in the same field and reservoir. The analysis showed that the well drilled with 18% higher mud weight compared with its offset well and yet showing more unstable wellbore was, in fact, drilled with more aggressive drilling parameters. The aggressive drilling parameters induce additional mechanical disturbance to the wellbore wall causing more severe wellbore enlargements. We devised a new approach of wellbore stability management using two-pronged strategy. It focuses on designing an optimum weight design using geomechanics to address stress-induced wellbore failure together with specifying safe limits of drilling parameters to minimize wellbore damage due to excessive downhole drillstring vibrations. The findings helped achieve more stable wellbore in subsequent wells with hole condition meeting logging and completion requirements as well as avoiding drilling problems.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 1957-1981 ◽  
Author(s):  
Chao Liu ◽  
Yanhui Han ◽  
Hui–Hai Liu ◽  
Younane N. Abousleiman

Summary When drilling through naturally fractured formations, the existence of natural fractures affects the fluid diffusion and stress distribution around the wellbore and induces degradation of rock strength. For chemically active formations, such as shale, the chemical–potential difference between the drilling mud and the shale–clay matrix further complicates the nonmonotonic coupled pore–pressure processes in and around the wellbore. In this work, we apply a recently formulated theory of dual–porosity/permeability porochemoelectroelasticity to predict the time evolution of mud–weight windows, while calculating stresses and pore pressure around an inclined wellbore drilled in a fractured shale formation. The effects of natural–fracture geometric and spatial distributions coupled with the chemical activity are considered in the wellbore–stability analysis. To account for the degrading effect of the fractured shale matrix on the bulk rock strength, a modified Hoek–Brown (MHB) criterion is developed to more closely describe the in–situ state of stress effects on the compressive shearing strength at great depth. Compared with the original Hoek–Brown (HB) failure criterion, the MHB criterion considers the influence of the intermediate principal stress and thus shows better agreement with true–triaxial data for various rocks at varying stress levels. The MHB criterion converges to the original HB criterion when the confining in–situ stresses are equal. Two field case studies indicate that this novel integrative methodology is capable of predicting the operational drilling–mud–weight windows used in these two cases. Another advantage of this newly developed technique is that it can be used as a back–analysis tool to estimate the fracture–matrix permeability from field operational data.


Author(s):  
Petar Mijić ◽  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić

About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids. This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.


2003 ◽  
Vol 125 (3) ◽  
pp. 169-176 ◽  
Author(s):  
M. K. Rahman ◽  
Zhixi Chen ◽  
Sheik S. Rahman

During drilling operations, the mud filtrate interacts with the pore fluid around the wellbore and changes pore pressure by capillary and chemical potential effects. Thus the change in pore pressure around borehole becomes time-dependent, particularly in extremely low permeability shaley formations. In this paper, the change in pore pressure due to capillary and chemical potential effects are investigated experimentally. Analytical models are also developed based on the experimental results. A wellbore stability analysis model incorporating the time-dependent change in pore pressure is applied to a vertical well in a shale formation under normal fault stress regime.


2019 ◽  
Vol 10 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Zahra Bahmaei ◽  
Erfan Hosseini

AbstractPore pressure estimation is important for both exploration and drilling projects. During the exploration phase, a prediction of pore pressure can be used to evaluate exploration risk factors including the migration of formation fluids and seal integrity. To optimize drilling decisions and well planning in abnormal pressured areas, it is essential to carry out pore pressure predictions before drilling. Mud weight and fracture gradient are essential parameters to have wellbore stability, prevent blowout, lost circulation, kick, sand production and reservoir damages. Predrill pore pressure accurate prediction allows the appropriate mud weight to be selected and allows the casing program to be optimized, thus enabling safety by preventing wellbore collapse and economic drilling by reducing the cost. The goal of this study is to estimate pore pressure relation with subsurface velocity in the Sefid-Zakhor gas field. Manufactured sonic logs are modified using the check shot interval velocity of Sefid-Zakhor well No. 1. The final acoustic impedance model is converted to the velocity model by removing density. Finally, the velocity model is converted to pore pressure using Bowers (in: IADC/SPE drilling conference proceedings, 1995) relation. The results of the pore pressure model are validated by pore pressure data obtained by the MDT well test tool. Generally, the results show the normal trend for pore pressure in the area, except in the left side of the anticline in the 2D seismic section, because of tectonic uplifting.


Sign in / Sign up

Export Citation Format

Share Document