Integrating Reservoir Geomechanics with Multiple Fracture Propagation and Proppant Placement

SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 662-691 ◽  
Author(s):  
Ripudaman Manchanda ◽  
Shuang Zheng ◽  
Sho Hirose ◽  
Mukul M. Sharma

Summary This paper presents the formulation and results from a coupled finite-volume (FV)/finite-area (FA) model for simulating the propagation of multiple hydraulically driven fractures in two and three dimensions at the wellbore and pad scale. The proposed method captures realistic representations of local heterogeneities, layering, fracture turning, poroelasticity, interactions with other fractures, and proppant transport. We account for competitive fluid and proppant distribution between multiple fractures from the wellbore. Details of the model formulation and its efficient numerical implementation are provided, along with numerical studies comparing the model with both analytical solutions and field results. The results demonstrate the effectiveness of the proposed method for the comprehensive modeling of hydraulically driven fractures in three dimensions at a pad scale.

SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 1000-1008 ◽  
Author(s):  
Kan Wu ◽  
Jon E. Olson

Summary Simultaneous multiple-fracture treatments in horizontal wellbores are becoming a prevalent approach to economically develop unconventional resources in shale reservoirs. One challenge to efficiently use the technique is the generation of effective hydraulic fractures from all perforation clusters. In this work, we conducted a fundamental study of physical mechanisms controlling simultaneous multiple-fracture propagation and discussed the potential approaches to improve nonuniform development of multiple fractures. This study was investigated by our recently developed 3D fracture-propagation model that captures the coupled elastic deformation of the rock with fluid flow in the horizontal wellbore and within the fractures. The model demonstrated that fracture geometry was controlled by both the stress-shadow effects and dynamic partitioning of flow rate. The analysis results indicated that the nonuniform development of a multiple-fracture array, for example, a three-fracture array in this study, was induced by the uneven partitioning of flow rate into each fracture, which was dependent on the flow resistance from wellbore friction, perforation friction, and fracture propagation. Furthermore, the stress shadowing from the exterior fractures exerted additional stress on the interior fractures and increased the resistance of fracture propagation, resulting in the interior fractures receiving much less fluid. To minimize the negative effects of stress shadowing and favor more-uniform fracture growth, we investigated potential approaches to promote uniform partitioning of flow rate through adjusting the flow resistance between multiple fractures. The results showed that adjusting perforation friction can provide an effective way to modify the partitioning of flow rate and mitigate the negative effects of stress shadowing. The mechanisms investigated in this study are consistent with field observations. Our approach can help field operators to improve the effectiveness of multiple fracturing treatments and maximize the production.


Author(s):  
Andrew Koehring ◽  
Eliot Winer

Currently, there are many engineering software packages targeted toward high fidelity modeling. Computer aided design (CAD) tools are one example of this. The need for increasingly accurate models has caused this class of software to become even more detailed and comprehensive. Modeling a single design can be a time intensive process; so much so, that most modeling is done by specifically trained CAD professionals, not designers. These advancements in CAD software are at odds with the goal of conceptual design, which is to generate and evaluate as many concepts as possible in a limited amount of time. Within the engineering design process, changes made in preliminary stages have much greater impact for significantly less cost. Unfortunately, few software packages exist that are tailored for use so early in a product’s design cycle. This paper presents an application developed specifically for conceptual design. Through the use of an augmented reality environment, designers are able to quickly and intuitively assemble concepts. Potential designs can be easily manipulated in three dimensions, enhancing the ability to communicate the idea to others.


1980 ◽  
Vol 20 (06) ◽  
pp. 533-554 ◽  
Author(s):  
Keith H. Coats

Abstract This paper describes a numerical model forsimulating wet or dry, forward or reverse combustionin one, two, or three dimensions. The formulation isconsiderably more general than any reported to date.The model allows any number and identities ofcomponents. Any component may be distributed inany or all of the four phases (water, oil, gas, andsolid or coke.The formulation allows any number of chemicalreactions. Any reaction may have any number ofreactants, products, and stoichiometry, identifiedthrough input data. The energy balance accounts forheat loss and conduction, conversion, and radiationwithin the reservoir.The model uses no assumptions regarding degreeof oxygen consumption. The oxygen concentration iscalculated throughout the reservoir in accordancewith the calculated fluid flow pattern and reactionkinetics. The model, therefore, simulates the effectsof oxygen bypassing caused by kinetic-limitedcombustion or conformance factors.We believe the implicit model formulation resultsin maximum efficiency (lowest computing cost), andrequired computing times are reported in the paper.The paper includes comparisons of model resultswith reported laboratory adiabatic-tube test results.In addition, the paper includes example field-scalecases, with a sensitivity study showing effects on oilrecovery of uncertainties in rock/fluid properties. Introduction Recent papers by Ali, Crookston et al., andYoungren provide a comprehensive review of earlierwork in numerical modeling of the in-situcombustion process.The trend in this modeling has been toward morerigorous treatment of the fluid flow and interphasemass transfer; inclusion of more components, morecomprehensive reaction kinetics, and stoichiometry;and more implicit treatment of the finite differencemodel equations.The purpose of this work was to extend thegenerality of previous models while preserving orreducing the associated computing-time requirement.The most comprehensive or sophisticated combustionmodels described to date appear to be thoseof Crookston et al. and Youngren. Therefore, wecompare our model formulation and results here withthose models.A common objective of different investigators'efforts in modeling in-situ combustion is developmentof more efficient formulations and methods ofsolution. This is especially important in thecombustion case because of the large number ofcomponents and equations involved. For a given numberof components and reactions, computing time pergrid block per time step will increase rapidly as theformulation is rendered more implicit. However, increasing implicitness tends to allow larger timesteps, which in turn reduces overall computingexpense. To pursue the above objective, then, authorsshould present as completely as possible the details oftheir formulations and the associatedcomputing-time requirements.The thermal model described here simulateswet or dry, forward or reverse combustion in one, two, or three dimensions. The formulation allowsany number and identities of components and anynumber of chemical reactions, with reactants, products, and stoichiometry specified through input products, and stoichiometry specified through input data. SPEJ P. 533


2021 ◽  
Vol 18 (6) ◽  
pp. 954-969
Author(s):  
Yunlin Gao ◽  
Huiqing Liu ◽  
Chao Pu ◽  
Huiying Tang ◽  
Kun Yang ◽  
...  

Abstract To extract more gas from shale gas reservoirs, the spacing among hydraulic fractures should be made smaller, resulting in a significant stress shadow effect. Most studies regarding the stress shadow effect are based on the assumption of homogeneity in rock properties. However, strong heterogeneity has been observed in shale reservoirs, and the results obtained with homogeneous models can be different from practical situations. A series of case studies have been conducted in this work to understand the effects of mechanical heterogeneity on multiple fracture propagation. Fracture propagation was simulated using the extended finite element method. A sequential Gaussian simulation was performed to generate a heterogeneous distribution of geomechanical properties. According to the simulation results, the difficulty of fracture propagation is negatively correlated with the Young's modulus and Poisson's ratio, and positively correlated with tensile strength. When each of the multiple fractures propagates in a homogeneous area with different mechanical properties, the final geometry of the fracture is similar to homogeneous conditions. When the rock parameter is a random field or heterogeneity perpendicular to the propagation direction of fracture, the fracture will no longer take the wellbore as the center of symmetry. Based on the analysis of fracture propagation in random fields, a small variance of elastic parameters can result in asymmetrical propagation of multiple fractures. Moreover, the asymmetrical propagation of hydraulic fractures is more sensitive to the heterogeneity of Poisson's ratio than Young's modulus. This study emphasises the importance of considering geomechanical heterogeneity and provides some meaningful suggestions regarding hydraulic fracturing designs.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 337-346 ◽  
Author(s):  
Kan Wu ◽  
Jon E. Olson

Summary Successfully creating multiple hydraulic fractures in horizontal wells is critical for unconventional gas production economically. Optimizing the stimulation of these wells will require models that can account for the simultaneous propagation of multiple, potentially nonplanar, fractures. In this paper, a novel fracture-propagation model (FPM) is described that can simulate multiple-hydraulic-fracture propagation from a horizontal wellbore. The model couples fracture deformation with fluid flow in the fractures and the horizontal wellbore. The displacement discontinuity method (DDM) is used to represent the mechanics of the fractures and their opening, including interaction effects between closely spaced fractures. Fluid flow in the fractures is determined by the lubrication theory. Frictional pressure drop in the wellbore and perforation zones is taken into account by applying Kirchoff's first and second laws. The fluid-flow rates and pressure compatibility are maintained between the wellbore and the multiple fractures with Newton's numerical method. The model generates physically realistic multiple-fracture geometries and nonplanar-fracture trajectories that are consistent with physical-laboratory results and inferences drawn from microseismic diagnostic interpretations. One can use the simulation results of the FPM for sensitivity analysis of in-situ and fracture treatment parameters for shale-gas stimulation design. They provide a physics-based complex fracture network that one can import into reservoir-simulation models for production analysis. Furthermore, the results from the model can highlight conditions under which restricted width occurs that could lead to proppant screenout.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1364-1377 ◽  
Author(s):  
Vyacheslav Guk ◽  
Mikhail Tuzovskiy ◽  
Don Wolcott ◽  
Joe Mach

Summary Horizontal wells with multiple hydraulic fractures have become a standard completion for the development of tight oil and gas reservoirs. Successful optimization of multiple-fracture design on horizontal wells began empirically in the Barnett Shale in the late 1990s (Steward 2013; Gertner 2013). More recently, research has focused on further improving fracturing performance by developing a model-derived optimum. Some researchers have focused on an economic optimum on the basis of multiple runs of an analytical or numerical model (Zhang et al. 2012; Saputelli et al. 2014). With such an approach, a new set of model runs is necessary to optimize the design each time the input parameters change significantly. Running multiple simulations for every optimization case might not always be practical. An alternative approach is to develop well-performance curves with dimensionless variables on the basis of the performance model. Such an approach was the basis for unified fracture design (UFD) for a single fracture in a vertical well (Economides et al. 2002). However, a similar systemized method to calculate the optimum for a horizontal well with multiple hydraulic fractures was missing. The objective of this study was to develop a rigorous and unified dimensionless optimization technique with type curves for the case of multiple transverse fractures in a horizontal well—an extension of UFD. The mathematical problem was solved in dimensionless variables. Multiple fractures include the proppant number (NP), penetration ratio (Ix), dimensionless conductivity (CfD), and aspect ratio (yeD) for each fracture, which is inversely proportional to the number of fractures. The direct boundary element (DBE) method was used to generate the dimensionless productivity index (JD) for a given range of these parameters (28,000 runs) for the pseudosteady-state case. Finally, total well JD was plotted as a function of the number of fractures for various NP. The effect of minimum fracture width was studied, and the optimization curves were adjusted for three cases of minimum fracture width. The provided dimensionless type curves can be used to identify the optimized number of fractures and their geometry for a given set of parameters, without running a more complicated numerical model multiple times. First, the proppant mass (and hence, NP) used for the fracture design can be selected on the basis of economic or other considerations. For this purpose, a relationship between total JD and NP, which accounts for the minimum fracture width requirement, was provided. Then, the optimal number of fractures can be calculated for a given NP using the generated type curves with minimum width constraints. The following observations were made during the study on the basis of the performed runs: For a given volume or proppant, NP, total JD for multiple fractures increases to an asymptote as the number of fractures increases. This asymptote represents a technical potential for multiple fractures and for high proppant numbers (NP≥100), with a technical potential of 3πNP. Below this asymptote, the more fractures that are created for a fixed NP, the larger the JD. In practice, minimum fracture width constrains the fracture geometry, and therefore maximum JD. For the case when 20/40 sand is used for multiple hydraulic fracturing of a 0.01-md formation with square total area, the optimal number of factures is approximately NP25. Application of horizontal drilling technology with multiple fractures assumes the availability of high proppant numbers. It was shown mathematically that the alternative low proppant numbers (NP≤20 for the previous case) are impractical for multiple fractures, because total JD cannot be significantly higher than JD for an optimized single fracture in the same area. This means that low formation permeability and/or high proppant volumes are needed for multiple fracture treatments.


Sign in / Sign up

Export Citation Format

Share Document