Environmentally-Friendly Production and Recovery Processes for Heavy Oils

2021 ◽  
Author(s):  
Celal Hakan Canbaz ◽  
Cenk Temizel ◽  
Yildiray Palabiyik ◽  
Korhan Kor ◽  
Luky Hendrandingrat ◽  
...  

Abstract Oil Industry is going green and there is no solid and comprehensive publication that outlines the use of green energies and methods in oil recovery. Thus, this paper is going to close that gap. As there are more environmental restrictions especially in developed countries, inclusion of green energy methods in petroleum recovery processes is very important for the future of these reserves. We will focus on extra/heavy oil as conventional oil is simpler to produce and doesn't need EOR processes that may come with environmental footprints. The objective of this study is to investigate and outline the ‘green’ production and recovery processes of heavy oil recovery in environmentally-sensitive locations where greenhouse gas emissions, type of energy used to extract oil and gas (e.g., generation of steam using natural gas vs solar), environmental impact of surface facilities, transportation of produced oil and gas and other associated materials/chemica ls required for recovery (e.g. solvents for steam injection process) are critical for the operations as well as economics.

2017 ◽  
Vol 39 (13-14) ◽  
pp. 1283-1295
Author(s):  
Chun-sheng Guo ◽  
Fang-yi Qu ◽  
Yong Liu ◽  
Jing-ran Niu ◽  
Yong Zou

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 130-137 ◽  
Author(s):  
Chuan Lu ◽  
Huiqing Liu ◽  
Wei Zhao ◽  
Keqin Lu ◽  
Yongge Liu ◽  
...  

Summary In this study, the effects of viscosity-reducer (VR) concentration, salinity, water/oil ratio (WOR), and temperature on the performance of emulsions are examined on the basis of the selected VR. Different VR-injection scenarios, including single-VR injection and coinjection of steam and VR, are conducted after steamflooding by use of single-sandpack models. The results show that high VR concentration, high WOR, and low salinity are beneficial to form stable oil/water emulsions. The oil recoveries of steamflooding for bitumen and heavy oil are approximately 31 and 52%, respectively. The subsequent VR flooding gives an incremental oil recovery of 5.2 and 6.4% for bitumen and heavy oil, respectively. Flooding by steam/VR induces an additional oil recovery of 8.4–11.0% for bitumen and 12.1% for heavy oil. High-temperature steam favors the peeling off of oil and improving its fluidity, as well as the in-situ emulsions. VR solution is beneficial for the oil dispersion and further viscosity reduction. The coinjection of high-temperature steam and VR is much more effective for additional oil production in viscous-oil reservoirs.


2021 ◽  
Vol 11 (11) ◽  
pp. 4117-4130 ◽  
Author(s):  
Muhammad Rabiu Ado

AbstractAs governments around the world prepare for a transition period to a decarbonised energy and economic future, petroleum is needed to smoothen that transition. Based on the analysis of the International Energy Agency’s 2020 projections, around 770 billion barrels of oil are required to meet demand from now to 2040. However, according to British Petroleum’s Statistical Review of World Energy 2020, as at the end of 2019, the global total reserves of recoverable conventional and unconventional oils is approximately 1734 billion barrels. Out of that, the conventional easy-to-produce light oil accounts for only 30% (i.e. accounts for only 520.2 billion barrels). Therefore, the remaining 249.8 billion barrels of oil needed to satisfy demand up to 2040 must come from unconventional oils, namely heavy oils and bitumen. However, these unconventional resources are very difficult to produce and the current production methods have very high environmental footprints. Consequently, in accordance with climate crisis mitigations, the vast reserves of the virtually unexploited heavy oils and bitumen must be developed using advanced and greener extraction technologies, such as the yet-to-be-fully-understood THAI process which provides partial upgrading of heavy oil/bitumen via in situ combustion. Using validated numerical models which are developed using the CMG’s reservoir thermal simulator, the STARS, which is also used in this study, field scale reservoir simulations of the THAI process were performed with the wells arranged in staggered line drive (SLD) and direct line drive (DLD). Over the 834 days of operating time, the cumulative oil recovery in SLD is 32% of oil originally in place (OOIP) which is equivalent to 26,100 m3 whilst that in DLD is 27% OOIP. This shows that more oil (i.e. an additional 5% OOIP) was cumulatively recovered in SLD compared to in DLD model. It is found that smaller reservoir volume was swept by the combustion front in DLD and thus making the heat-affected reservoir volume smaller than that in SLD model. Furthermore, in DLD, due to the nearness of the injector well to the toe of the horizontal producer (HP) well, oxygen production began much earlier, compared to in the SLD. It is also found that the temperature of the mobile oil zone is higher in the SLD model compared to that in the DLD model. This implies that higher quality oil is produced when the wells are configured in the SLD pattern. Therefore, this first-of-a-kind work has shown that SLD arrangement is far more efficient, safer, and produces higher quality oil than DLD pattern and that actual process engineering designs should use SLD wells configuration.


Author(s):  
Ionescu (Goidescu) Nicoleta Mihaela ◽  
Vasiliu Viorel Eugen ◽  
Onutu Ion

Enhanced oil recovery (E.O.R) is oil recovery by the injection of materials not normally present in the reservoir. Thermal methods such as steam injection process are the best heavy oil recovery methods. Improvement of mobility ratio in the reservoir and economic recovery from heavy oil reservoirs depend mainly on reduction of heavy oil viscosity. For a steam injection process should consider the heat and mass transfer. Heavy oil reservoirs contain a considerable amount of hydrocarbon resources of the world. Meanwhile further demand for oil resources in the world , reduction of natural production from oil reservoirs, and finally price of oil in recent years have attracted notices to production methods from heavy and extra heavy oil reservoirs. High viscosity and great amounts of asphaltene in these hydrocarbons make difficulties in extraction, transportation, and process of heavy oil. In Romania there have been numerous theoretical and laboratory researches, as well as site experiments on the application of secondary recovery methods,Romanian specialists having a wide experience in this field


1986 ◽  
Vol 4 (5) ◽  
pp. 321-348
Author(s):  
Rawya Selby ◽  
S. M. Farouq Ali

Heavy oil and oil sands deposits constitute an important resource, with in-place estimates varying between 600 × 109 and 980 × 109 m3. These deposits are mostly concentrated in Canada, the US and Venezuela. The gradual depletion of conventional oil reserves is leading to a greater interest in heavy oil recovery. This paper presents on overview of heavy oil characteristics, worldwide deposits and recovery methods, with special emphasis on the heavy oils and oil sands of Canada. Thermal recovery techniques such as cyclic steam stimulation, steamflooding and in-situ combustion have been generally more successful than non-thermal methods. The principal thermal recovery processes are discussed in detail. Reservoir characteristics influencing the applicability of these processes are mentioned, and possible operational problems are outlined. Most of the Canadian heavy oils and oil sands deposits occur in the provinces of Alberta and Saskatchewan. Selected recovery projects currently in operation are described, outlining modifications to the basic process, problems encountered and range of success.


2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


2010 ◽  
Vol 49 (09) ◽  
pp. 22-33 ◽  
Author(s):  
John Ivory ◽  
Jeannine Chang ◽  
Roy Coates ◽  
Ken Forshner

Sign in / Sign up

Export Citation Format

Share Document