How to Improve Accuracy of a Kick Tolerance Model by Considering the Effects of Kick Classification, Frictional Losses, Pore Pressure Profile, and Influx Temperature

2021 ◽  
pp. 1-11
Author(s):  
Kazem Kiani Nassab ◽  
Shui Zuan Ting ◽  
Sompop Buapha ◽  
Nurfitrah MatNoh ◽  
Mohammad Naghi Hemmati

Summary Kick tolerance (KT) calculation is essential for a cost-effective well design and safe drilling operations. While most exploration and production operators have a similar definition of KT, the calculation is not consistent because of different assumptions that are made and the computational power of KT calculators. Dynamic multiphase drilling simulators usually provide KT estimates with a minimum number of assumptions. They are much more accessible nowadays for use in predicting the behavior of multiphase flow in drilling and well control operations. However, as far as we observed, the simulation services are mainly used for complex and marginal wells in which low KT may impose additional casing strings, unconventional costly drilling practices, or a high risk of major well control events. Thus, companies often use simplified steady-state models for relatively uncomplicated wells through their own KT calculation worksheets. This practice is usually justified by the misconception that simplified models are always conservative and give less KT than actual conditions. In contrast, some simplifications may lead to higher operational risks due to an overestimated KT, depending on well conditions and parameters. The primary objective of this work was to perform a quality assurance/quality control on KT calculation practices in Company P. Later on, based on our findings, we determined some solutions to improve accuracy in the simplified KT worksheets commonly used by engineers across the company. This became a driver for generating a new KT worksheet (Company Model), in particular for situations in which engineers do not have access to a kick simulator. However, it should not mislead readers about the requirements of the simulator for complex and low-KTwells. Quality assurance/quality control and subsequent investigations found that there are some important criteria and parameters that affect KT calculations, but they are missing in many simplified models or ignored by engineers because they are unaware of or lack adequate references. After reviewing relevant academic literature, common practices and assessing several off-the-shelf software programs, we generated a computer program using Visual Basic for applications to address KT sensitivity to different parameters in steady-state conditions. The newly developed program is based on a single gas bubble model that applies the effect of annular frictional losses, influx temperature, gas compressibility factor, well trajectory, and bottomhole assembly (BHA). Moreover, the program differentiates between swabbing and underbalanced conditions. A logical test is applied to determine the type of kick before computing the relevant influx volume. This kick classification concept is ignored in many KT models; this is a common mistake that leads to misleading results. The annular pressure loss (APL) parameter is sometimes assumed to be zero in KT spreadsheets, while as an additional stress load on the wellbore, it affects the kick budget and must be considered.

2011 ◽  
Vol 314-316 ◽  
pp. 2433-2438
Author(s):  
Wei Zhi Wang

By only applying a after the event exam in the quality control of the batch production is not enough to meet the needs of modern large-scale production. To a certain extent, modern quality control is a dynamic process of the steady-state judge and adjustment. A simple and reliable steady-state judge rule and method is the premise to guarantee the normal operation. This paper provides a quantitative method to evaluate production process steady-state by analyzing influence factors based on mathematical statistics. The method is both suitable for simple production process and complex production process with sub-processes.


Author(s):  
B. C. Roy ◽  
Tanmoy Guha ◽  
R. Ekambaram

<p>High level of quality during design, design-build and construction stages is a fundamental requirement to ensure that structure serves its intended purpose. Establishment of a quality assurance manual is prime necessity. Lack of quality control during design, review and approving design drawings are major reasons for structural failures. Designers and design checkers need to work in tandem to ensure more adequate Quality Assurance &amp; Control (QA/QC).</p><p>In structural design Durability is a key parameter and becomes critical for service life of 100/120 years. In design build and construction stages controlling work quality is important to maintain performance standards. Tailor made quality plan for Design-build Contract is essential. Quality procedures, inspection and testing needs implementation in practice to verify full compliance and prevent occurrence of faults and defects towards durability and service life. This paper deals with Quality with special emphasis on durability in design and construction through case studies of design build contracts.</p>


Sign in / Sign up

Export Citation Format

Share Document