Using Difference Factor Thermodynamics Models in Hydrate Formation Prediction During Surface Production Well Testing

2020 ◽  
Author(s):  
Igoniwari Green ◽  
Emenike Wami ◽  
Dorcas Jimmy
2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Shangfei Song ◽  
Bohui Shi ◽  
Weichao Yu ◽  
Lin Ding ◽  
Yang Liu ◽  
...  

Abstract Low temperature and high pressure conditions favor the formation of gas clathrate hydrates which is undesirable during oil and gas industries operation. The management of hydrate formation and plugging risk is essential for the flow assurance in the oil and gas production. This study aims to show how hydrate management in the deepwater gas well testing operations in the South China Sea can be optimized. To prevent the plugging of hydrate, three hydrate management strategies are investigated. The first method, injecting thermodynamic hydrate inhibitor (THI) is the most commonly used method to prevent hydrate formation. THI tracking is utilized to obtain the distribution of mono ethylene glycol (MEG) along the pipeline. The optimal dosage of MEG is calculated through further analysis. The second method, hydrate slurry flow technology is applied to the gas well. Pressure drop ratio (PDR) is defined to denote the hydrate blockage risk margin. The third method is the kinetic hydrate inhibitor (KHI) injection. The delayed effect of KHI on the hydrate formation induction time ensures that hydrates do not form in the pipe. This method is effective in reducing the injection amount of inhibitor. The problems of the three hydrate management strategies which should be paid attention to in industrial application are analyzed. This work promotes the understanding of hydrate management strategies and provides guidance for hydrate management optimization in oil and gas industry.


2009 ◽  
Author(s):  
Parviz Mehdizadeh ◽  
David Farchy ◽  
Jairo Suarez
Keyword(s):  

2016 ◽  
Vol 5 (1) ◽  
pp. 11-20
Author(s):  
Novia Rita ◽  
Novrianti Novrianti

Area X merupakan salah satu area yang terdapat di Lapangan Y PT. Chevron Pacific Indonesia, dimana area X terdiri dari 563 sumur. Pada Area X ini dilakukan pekerjaan tes terhadap sumur sebanyak 2 kali per bulan, sehingga untuk 563 sumur diperlukan 1126 kali tes perbulan. Fasilitas yang tersedia untuk production well test pada Area X hanya mampu 960 kali tes per bulan. Sehingga 116 sumur tidak akan mendapatkan jadwal tes pada setiap bulannya. Apabila prosedur seperti ini tetap dilakukan secara terus menerus maka akan selalu terdapat sisa sumur yang belum terpenuhi untuk dilakukan tes di setiap bulannya. Untuk mengatasi permasalahan ini dilakukan Tiering system. Tiering system adalah suatu metode dalam proses pengujian sumur dimana dalam metode ini sumur-sumur akan dikelompokkan berdasarkan produksi terbesar hingga terkecil. Sumur yang tergolong big production akan berada pada urutan teratas untuk dilakukan Well Testing (Tier #1) dan diikuti Tier #2, Tier #3 dan Tier #4 (Tiering System merupakan metode atau proses yang digunakan untuk mengelompokan data-data production well testing sumur yang banyak menjadi kelompok kelompak kecil, yang bertujuan untuk membantu mengoptimalisasi proses pekerjaan well test di Lapangan (Human Resources Sumatra Operation, 2012).. Kuantitas test sumur setiap bulan akan disesuaikan dengan kebutuhan data dan kategori Tier, hal ini bertujuan untuk mendapatkan data yang valid secara continue pada sumur, sehingga cepat diketahui dan di follow up jika terjadi permasalahan penurunan produksi pada sumur-sumur tersebut. Dengan Tiering System, maka 563 sumur yang harus dilakukan well testing setiap bulannya di Area X jadi terpenuhi karena hanya membutuhkan 777 kali tes perbulan. Bahkan waktu pelaksanaan well test masih tersisa untuk 183 kali tes, hal ini juga berdampak pada kenaikan produksi sebesar 5441 bbl per hari dengan keuntungan sebesar US$ 217.621,75.


Author(s):  
Shangfei Song ◽  
Bohui Shi ◽  
Weichao Yu ◽  
Wang Li ◽  
Jing Gong

Low temperature and high pressure conditions in deep water wells and sub-sea pipelines favour the formation of gas clathrate hydrates which is very undesirable during oil and gas industries operation. The management of hydrate formation and plugging risk is essential for the flow assurance in the oil and gas production. This study aims to show how the hydrate management in the deepwater gas well testing operations in the South China Sea can be optimized. As a result of the low temperature and the high pressure in the vertical 3860 meter-tubing, hydrate would form in the tubing during well testing operations. To prevent the formation or plugging of hydrate, three hydrate management strategies are investigated including thermodynamic inhibitor injection, hydrate slurry flow technology and thermodynamic inhibitor integrated with kinetic hydrate inhibitor. The first method, injecting considerable amount of thermodynamic inhibitor (Mono Ethylene Glycol, MEG) is also the most commonly used method to prevent hydrate formation. Thermodynamic hydrate inhibitor tracking is utilized to obtain the distribution of MEG along the pipeline. Optimal dosage of MEG is calculated through further analysis. The second method, hydrate slurry flow technology is applied to the gas well. Low dosage hydrate inhibitor of antiagglomerate is added into the flow system to prevent the aggregation of hydrate particles after hydrate formation. Pressure Drop Ratio (PDR) is defined to denote the hydrate blockage risk margin. The third method is a recently proposed hydrate risk management strategy which prevents the hydrate formation by addition of Poly-N-VinylCaprolactam (PVCap) as a kinetic hydrate inhibitor (KHI). The delayed effect of PVCap on the hydrate formation induction time ensures that hydrates do not form in the pipe. This method is effective in reducing the injection amount of inhibitor. The problems of the three hydrate management strategies which should be paid attention to in industrial application are analyzed. This work promotes the understanding of hydrate management strategy and provides guidance for hydrate management optimization in oil and gas industry.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3250-3264 ◽  
Author(s):  
Jianbo Zhang ◽  
Zhiyuan Wang ◽  
Wenguang Duan ◽  
Weiqi Fu ◽  
Baojiang Sun ◽  
...  

Summary Hydrate formation and deposition are usually encountered during deepwater gas well testing, and if hydrates are not detected and managed in time, a plugging accident can easily occur. In this study, we demonstrate a method for estimating and managing the risk of hydrate plugging in real time during the testing process. The method includes the following steps: predicting the hydrate stability region, calculating the hydrate formation and deposition behaviors, analyzing the effect of the hydrate behaviors on variations in wellhead pressure, monitoring the variations in wellhead pressure and estimating the hydrate plugging risk in real time, and managing the risk in real time. An improved pressure-drop calculation model is established to calculate the pressure drop in annular flows with hydrate behaviors, and it considers the dynamic effect of hydrate behavior on fluid flow and surface roughness. The pressure drops calculated at different times agree well with experimental and field data. A case study is conducted to investigate the applicability of the proposed method, and results show that with the continued formation and deposition of hydrates, both the effective inner diameter of the tubing and the wellhead pressure decrease accordingly. When the wellhead pressure decreases to a critical safety value under a given gas production rate, a hydrate inhibitor must be injected into the tubing to reduce the severity of hydrate plugging. It is also necessary to conduct real-time monitoring of variations in wellhead pressure to guarantee that the risk of hydrate plugging is within a safe range. This method enables the real-time estimation and management of hydrate plugging during the testing process, and it can provide a basis for the safe and efficient testing of deepwater gas wells.


2013 ◽  
Author(s):  
Alvin Stan Cullick ◽  
Miguel Villamizar ◽  
Guillermo Velasquez ◽  
Jose Antonio Rodriguez ◽  
Maiquel Manuel Querales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document