A General History Matching Algorithm for Three-Phase, Three-Dimensional Petroleum Reservoirs

1993 ◽  
Vol 1 (02) ◽  
pp. 83-92 ◽  
Author(s):  
Eliana M. Makhlouf ◽  
Wen H. Chen ◽  
Mel L. Wasserman ◽  
John H. Seinfeld
SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 35-48 ◽  
Author(s):  
Hamidreza Shahverdi ◽  
Mehran Sohrabi

Summary Multiphase flow takes place in many petroleum reservoirs—in particular, mature fields and reservoirs under fluid [e.g., gas, water-alternating-gas (WAG)] injection. The numerical simulation of such reservoirs requires knowledge of flow functions (i.e., relative permeability and capillary pressure). Because experimental measurement of fluid permeabilities (in particular) under three-phase-flow conditions is very time-consuming and difficult, many correlations and models were developed and these are widely used instead of measured data. In this study, we have used the results of a comprehensive set of WAG-injection coreflood experiments performed under different wettability conditions and core-permeability values to obtain relative permeabilites of oil, water, and gas under reservoir pressure and temperature. Three-phase relative permeability of each phase was obtained by history matching the measured production and differential pressure obtained in the laboratory. The results of the experiments revealed significant cyclic hysteresis effects in gas and oil relative permeability. We proposed new formulations and methodology for the modeling of cyclic hysteresis of three-phase relative permeability during WAG injection. This technique is a direct method that uses measured three-phase kr data obtained from the first cycle of WAG injection to predict the relative permeability of the subsequent cycles. The integrity of this technique was validated against the three-phase kr data obtained from our WAG experiments. We also assess the validity of the WAG-injection hysteresis model available in reservoir simulators against our three-phase relative permeability data to evaluate its performance.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Maria Laura Delle Delle Monache ◽  
Karen Chi ◽  
Yong Chen ◽  
Paola Goatin ◽  
Ke Han ◽  
...  

This paper uses empirical traffic data collected from three locations in Europe and the US to reveal a three-phase fundamental diagram with two phases located in the uncongested regime. Model-based clustering, hypothesis testing and regression analyses are applied to the speed–flow–occupancy relationship represented in the three-dimensional space to rigorously validate the three phases and identify their gaps. The finding is consistent across the aforementioned different geographical locations. Accordingly, we propose a three-phase macroscopic traffic flow model and a characterization of solutions to the Riemann problems. This work identifies critical structures in the fundamental diagram that are typically ignored in first- and higher-order models and could significantly impact travel time estimation on highways.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1506-1518 ◽  
Author(s):  
Pedram Mahzari ◽  
Mehran Sohrabi

Summary Three-phase flow in porous media during water-alternating-gas (WAG) injections and the associated cycle-dependent hysteresis have been subject of studies experimentally and theoretically. In spite of attempts to develop models and simulation methods for WAG injections and three-phase flow, current lack of a solid approach to handle hysteresis effects in simulating WAG-injection scenarios has resulted in misinterpretations of simulation outcomes in laboratory and field scales. In this work, by use of our improved methodology, the first cycle of the WAG experiments (first waterflood and the subsequent gasflood) was history matched to estimate the two-phase krs (oil/water and gas/oil). For subsequent cycles, pertinent parameters of the WAG hysteresis model are included in the automatic-history-matching process to reproduce all WAG cycles together. The results indicate that history matching the whole WAG experiment would lead to a significantly improved simulation outcome, which highlights the importance of two elements in evaluating WAG experiments: inclusion of the full WAG experiments in history matching and use of a more-representative set of two-phase krs, which was originated from our new methodology to estimate two-phase krs from the first cycle of a WAG experiment. Because WAG-related parameters should be able to model any three-phase flow irrespective of WAG scenarios, in another exercise, the tuned parameters obtained from a WAG experiment (starting with water) were used in a similar coreflood test (WAG starting with gas) to assess predictive capability for simulating three-phase flow in porous media. After identifying shortcomings of existing models, an improved methodology was used to history match multiple coreflood experiments simultaneously to estimate parameters that can reasonably capture processes taking place in WAG at different scenarios—that is, starting with water or gas. The comprehensive simulation study performed here would shed some light on a consolidated methodology to estimate saturation functions that can simulate WAG injections at different scenarios.


2022 ◽  
Vol 354 ◽  
pp. 131219
Author(s):  
Siyuan Lv ◽  
Yueying Zhang ◽  
Li Jiang ◽  
Lianjing Zhao ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document