A Novel Method to Speedup Calibrating Horizontal Well Performance Model with Multi-Stage Fracturing Treatments and Its Applications in Delaware Basin

2021 ◽  
Author(s):  
Hongjie Xiong ◽  
Sangcheol Yoon ◽  
Yu Jiang

Abstract The multi-stage fracture treatments create complex fracture networks with various proppant type, size, and concentration distributed within and along fractures through reservoir rock, where larger size and higher concentrations usually result in higher long-term conductivity. To model the fracture conductivity reduction with depletion, we traditionally use a single monotonic relationship between fracture conductivity and pressure, which is proper for a single proppant concentration but obviously hard to describe the situation in the horizontal wells with complex concentration distributions. This paper is to present a new method to speed-up the calibration process of well performance models with multi-million cells and its two applications in the Wolfcamp reservoir in the Delaware Basin. To study well performance and completion effectiveness of 3000 horizontal wells over University Lands acreage in the Permian Basin, we have built a series of well performance models with complex fracture networks (SPE 189855 and 194367). We have used those models to methodically investigate the drivers of well completion parameters and well spacing on well performance and field development value (URTeC 554). In the process of building multiple robust well performance models, we found out it is hard and time-consuming to calibrate a well performance model with multi-million cells based upon a single correlation between fracture conductivity and pressure. We first modeled the complex fracture networks and fracture conductivity distributions based upon the historical completion pumping data; we then developed multiple correlations to characterize fracture conductivity reduction and closure behaviors with pressure depletion based upon initial fracture conductivities (as the result of proppant type, size, and concentration) and reservoir geomechanical properties. We found out that this method significantly reduced our model calibration time. We then applied our method to multiple case studies in the Permian Basin to test and improve the method. We have thus developed a method to mimic the fracture conductivity reduction and closure behavior in the horizontal wells with complex fracture networks. The paper will layout the theoretical foundation and detail our method to develop the multiple correlations to model fracture conductivity reduction and fracture closure behaviors in the horizontal well performance models in the unconventional reservoirs. We will then show two case studies to illustrate how we have applied our method to speed up the model calibration process. Based upon the multiple applications into our model calibration process, we have concluded that the method is very effective to calibrate the well performance model with complex fracture networks. The method can be used for engineers to simplify and speedup calibrating horizontal well performance models. Therefore, engineers can more effectively build more robust well performance models to optimize field development plans in the unconventional reservoirs.

2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


2014 ◽  
Vol 962-965 ◽  
pp. 489-493
Author(s):  
Zhi Qiang Li ◽  
Yong Quan Hu ◽  
Wen Jiang Xu ◽  
Jin Zhou Zhao ◽  
Jian Zhong Liu ◽  
...  

This article presents a new exploitation method based on the same fractured horizontal well with fractures for injection or production on offshore low permeability oilfields for the purpose of adapting to their practical situations and characteristics, which means fractures close to the toe of horizontal well used for injecting water and fractures near the heel of horizontal well used for producing oil. According to proposed development mode of fracturing, relevant physical model is established, Then reservoir numerical simulation method has been applied to study the effect of arrangement pattern of injection and production fractures, fracture conductivity, fracture length on oil production. Research indicates cumulative oil production is much higher by employing the middle fracture for injecting water compared with using the remote one, suggesting that the middle fracture adopted for injecting water, and hydraulic fracture length and conductivity have been optimized. The proposed development pattern of a staged fracturing for horizontal wells with some fractures applied for injecting water and others for production based on the same horizontal well provides new thoughts for offshore oilfields exploitation.


2015 ◽  
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Abstract Since the late 1980's when Maersk published their work on multiple fracturing of horizontal wells in the Dan Field, the use of transverse multiple fractured horizontal wells has become the completion of choice and become the “industry standard” for unconventional and tight oil and tight gas reservoirs. Today approximately sixty percent of all wells drilled in the United States are drilled horizontally and nearly all of them are multiple fractured. Because a horizontal well adds additional cost and complexity to the drilling, completion, and stimulation of the well we need to fully understand anything that affects the cost and complexity. In other words, we need to understand the affects of the principal stresses, both direction and magnitude, on the drilling completion, and stimulation of these wells. However, little work has been done to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the question, in what direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal) or do I drill it in the direction of the minimum horizontal stress (transverse)? The answer to this question relates directly back to the title of this paper and please "Don't let your land man drive that decision." This paper focuses on the horizontal well's lateral direction (longitudinal or transverse fracture orientation) and how that direction influences productivity, reserves, and economics of horizontal wells. Optimization studies using a single phase fully three dimensional numeric simulator including convergent non-Darcy flow were used to highlight the importance of lateral direction as a function of reservoir permeability. These studies, conducted for both oil and gas, are used to identify the point on the permeability continuum where longitudinal wells outperform transverse wells. The simulations compare and contrast the transverse multiple fractured horizontal well to longitudinal wells based on the number of fractures and stages. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affected the decision over lateral direction in both oil and gas reservoirs. Additionally, how does completion style affect the lateral direction? That is, how does an open hole completion compare to a cased hole completion and should the type of completion affect the decision on in what direction the lateral should be drilled? These simulation results will be used to discuss the various horizontal well completion and stimulation metrics (rate, recovery, and economics) and how the choice of metrics affects the choice of lateral direction. This paper will also show a series of field case studies to illustrate actual field comparisons in both oil and gas reservoirs of longitudinal versus transverse horizontal wells and tie these field examples and results to the numeric simulation study. This work benefits the petroleum industry by: Establishing well performance and economic based criteria as a function of permeability for drilling longitudinal or transverse horizontal wells,Integrating the reservoir objectives and geomechanic limitations into a horizontal well completion and stimulation strategy,Developing well performance and economic objectives for horizontal well direction (transverse versus longitudinal) and highlighting the incremental benefits of various completion and stimulation strategies.


2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ren Zongxiao ◽  
Du Kun ◽  
Shi Junfeng ◽  
Liu Wenqiang ◽  
Qu Zhan ◽  
...  

Due to a large number of natural fractures in tight oil reservoir, many complex fracture networks are generated during fracturing operation. There are five kinds of flow media in the reservoir: “matrix, natural fracture, hydraulic fracture network, perforation hole, and horizontal wellbore”. How to establish the seepage model of liquid in multiscale medium is a challenging problem. Firstly, this paper establishes the dual medium seepage model based on source function theory, principle of superposition, and Laplace transformation and then uses the “star-triangle” transform method to establish the transient pressure behavior model in the complex fracture network. After that, perforating seepage model and variable mass flow in horizontal wellbore were established. Finally, continuous condition was used to couple the seepage model of dual medium seepage model, transient pressure behavior model in the complex fracture network, perforation seepage model, and the variable mass seepage model in horizontal wellbore, to establish a semianalytical coupled seepage model for horizontal well in tight reservoir. This paper provides theoretical basis for field application of horizontal well with complex fracture networks.


2020 ◽  
Vol 187 ◽  
pp. 106816 ◽  
Author(s):  
Ming Yue ◽  
Qitao Zhang ◽  
Weiyao Zhu ◽  
Liaoyuan Zhang ◽  
Hongqing Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document