Early Applications of Viscosifying Friction Reducers for Hydraulic Fracturing Operations in the Vaca Muerta Formation, Argentina

2021 ◽  
Author(s):  
Roberto Sentinelli ◽  
Leandro Moreno ◽  
Marcelo Pellicer ◽  
Mark Van Domelen

Abstract Early hydraulic fracturing completions in the Vaca Muerta Formation in central Argentina have incorporated the use of conventional fluid systems, such as linear and crosslinked guar-based polymers. Within the past few years, however, the benefits of viscosifying friction reducers (VFR) have been demonstrated in the industry, predominantly within the United States. The objective of this project was to trial the VFR fluid technology in fracturing operations in this area for potential use for full field development. After studying the potential advantages of the VFR technology including cost savings, simplified operations and enhanced well production, a project was initiated to determine if those same benefits could be obtained. To accomplish this, studies were performed to ensure economic and technical justification through a stepwise process of laboratory testing, logistical and operational considerations, a single well field trial, and a five well development phase evaluation project. The pilot project was performed on a horizontal, 27 stage lateral in the Aguada Pichana Oeste field in the Neuquen Basin of Argentina. The five well development phase evaluation project was performed in the Lindero Atravesado field. Positive laboratory test results led to a field trial using this technology, during which several benefits of the VFR fluid system began to emerge. Operational efficiency was an early success, including a reduction in the quantity of chemicals on location, more simplified pumping schedules, and low pumping pressures. Secondly, significant cost savings were realized compared to previous fluid system packages. Finally, positive production results were observed, leading to the decision to incorporate this technology into full field development operations. This paper will review the results of the stepwise evaluation process along with a focus on the economic benefits and well production from the development phase evaluation project. This paper describes the transition by Pan American Energy (PAE) from conventional fracturing fluids to viscosifying friction reducer (VFR) technology in the Vaca Muerta Formation. The paper highlights the performance of a relatively new treatment fluid which delivered positive results in a strategic international asset. The project has led to full field development using this technology. The same efficiencies provided by this system can potentially be realized through applications in other basins.

2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


Author(s):  
Tomy Varghese ◽  
Q Chen ◽  
P Rahko ◽  
James Zagzebski
Keyword(s):  

2017 ◽  
Vol 10 (1) ◽  
pp. 37-47
Author(s):  
Qingsha Zhou ◽  
Kun Huang ◽  
Yongchun Zhou

Background: The western Sichuan gas field belongs to the low-permeability, tight gas reservoirs, which are characterized by rapid decline in initial production of single-well production, short periods of stable production, and long periods of late-stage, low-pressure, low-yield production. Objective: It is necessary to continue pursuing the optimization of transportation processes. Method: This paper describes research on mixed transportation based on simplified measurements with liquid-based technology and the simulation of multiphase processes using the PIPEPHASE multiphase flow simulation software to determine boundary values for the liquid carrying process. Conclusion: The simulation produced several different recommendations for the production and maximum multiphase distance along with difference in elevation. Field tests were then conducted to determine the suitability of mixed transportation in western Sichuan, so as to ensure smooth progress with fluid metering, optimize the gathering process in order to achieve stable and efficient gas production, and improve the economic benefits of gas field development.


2018 ◽  
Author(s):  
Jonatan Medina ◽  
Gervasio Jose Salcedo ◽  
Sergio Eduardo Olave

2015 ◽  
Author(s):  
Pungki Ariyanto ◽  
Mohamed.A.. A. Najwani ◽  
Yaseen Najwani ◽  
Hani Al Lawati ◽  
Jochen Pfeiffer ◽  
...  

Abstract This paper outlines how a drilling team is meeting the challenge of cementing a production liner in deep horizontal drain sections in a tight sandstone reservoir. It is intended to show how the application of existing technologies and processes is leading to performance gain and improvements in cementing quality. The full field development plan of the tight reservoir gas project in the Sultanate of Oman is based on drilling around 300 wells targeting gas producing horizons at measured depths of around 6,000m MD with 1,000m horizontal sections. Effective cement placement for zonal isolation is critical across the production liner in order to contain fracture propagation in the correct zone. The first few attempts to cement the production liner in these wells had to overcome many challenges before finally achieving the well objectives. By looking at the complete system, rather than just the design of the cement slurry, the following criteria areas were identified: –Slurry design–Mud removal and cement slurry placement–Liner hanger and float equipment Improvements have been made in each of these areas, and the result has been delivery of a succesfully optimised liner cementing design for all future horizontal wells.


Sign in / Sign up

Export Citation Format

Share Document