Achieving Cementing Improvement in Horizontal Tight Gas Field Development

2015 ◽  
Author(s):  
Pungki Ariyanto ◽  
Mohamed.A.. A. Najwani ◽  
Yaseen Najwani ◽  
Hani Al Lawati ◽  
Jochen Pfeiffer ◽  
...  

Abstract This paper outlines how a drilling team is meeting the challenge of cementing a production liner in deep horizontal drain sections in a tight sandstone reservoir. It is intended to show how the application of existing technologies and processes is leading to performance gain and improvements in cementing quality. The full field development plan of the tight reservoir gas project in the Sultanate of Oman is based on drilling around 300 wells targeting gas producing horizons at measured depths of around 6,000m MD with 1,000m horizontal sections. Effective cement placement for zonal isolation is critical across the production liner in order to contain fracture propagation in the correct zone. The first few attempts to cement the production liner in these wells had to overcome many challenges before finally achieving the well objectives. By looking at the complete system, rather than just the design of the cement slurry, the following criteria areas were identified: –Slurry design–Mud removal and cement slurry placement–Liner hanger and float equipment Improvements have been made in each of these areas, and the result has been delivery of a succesfully optimised liner cementing design for all future horizontal wells.

2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


2021 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


2021 ◽  
Author(s):  
Faizan Ahmed Siddiqi ◽  
Carlos Arturo Banos Caballero ◽  
Fabricio Moretti ◽  
Mohamed AlMahroos ◽  
Uttam Aswal ◽  
...  

Abstract Lost circulation is one of the major challenges while drilling oil and gas wells across the world. It not only results in nonproductive time and additional costs, but also poses well control risk while drilling and can be detrimental to zonal isolation after the cementing operation. In Ghawar Gas field of Saudi Arabia, lost circulation across some naturally fractured formations is a key risk as it results in immediate drilling problems such as well control, formation pack-off and stuck pipe. In addition, it can lead to poor isolation of hydrocarbon-bearing zones that can result in sustained casing pressure over the life cycle of the well. A decision flowchart has been developed to combat losses across these natural fractures while drilling, but there is no single solution that has a high success rate in curing the losses and regaining returns. Multiple conventional lost circulation material pills, conventional cement plugs, diesel-oil-bentonite-cement slurries, gravel packs, and reactive pills have been tried on different wells, but the probability of curing the losses is quite low. The success with these methods has been sporadic and shown poor repeatability, so the need of an engineered approach to mitigate losses is imperative. An engineered composite lost-circulation solution was designed and pumped to regain the returns successfully after total losses across two different formations on a gas well in Ghawar field. Multiple types of lost-circulation material were tried on this well; however, all was lost to the naturally fractured carbonate formation. Therefore, a lost-circulation solution was proposed that included a fiber-based lost-circulation control (FBLC) pill, composed of a viscosifier, optimized solid package and engineered fiber system, followed by a thixotropic cement slurry. The approach was to pump these fluids in a fluid train so the FBLC pill formed a barrier at the face of the formation while the thixotropic cement slurry formed a rapid gel and quickly set after the placement to minimize the risk of losing all the fluids to the formation. Once this solution was executed, it helped to regain fluid returns successfully across one of the naturally fractured zones. Later, total losses were encountered again across a deeper loss zone that were also cured using this novel approach. The implementation of this lost-circulation system on two occasions in different formations has proven its applicability in different conditions and can be developed into a standard engineered approach for curing losses. It has greatly helped to build confidence with the client, as it contributed towards minimizing non-productive time, mitigated the risk of well control, and assisted in avoiding any remedial cementing operations that may have developed due to poor zonal isolation across certain critical flow zones.


2020 ◽  
Vol 60 (1) ◽  
pp. 267
Author(s):  
Sadegh Asadi ◽  
Abbas Khaksar ◽  
Mark Fabian ◽  
Roger Xiang ◽  
David N. Dewhurst ◽  
...  

Accurate knowledge of in-situ stresses and rock mechanical properties are required for a reliable sanding risk evaluation. This paper shows an example, from the Waitsia Gas Field in the northern Perth Basin, where a robust well centric geomechanical model is calibrated with field data and laboratory rock mechanical tests. The analysis revealed subtle variations from the regional stress regime for the target reservoir with significant implications for sanding tendency and sand management strategies. An initial evaluation using a non-calibrated stress model indicated low sanding risks under both initial and depleted pressure conditions. However, the revised sanding evaluation calibrated with well test observations indicated considerable sanding risk after 500 psi of pressure depletion. The sanding rate is expected to increase with further depletion, requiring well intervention for existing producers and active sand control for newly drilled wells that are cased and perforated. This analysis indicated negligible field life sanding risk for vertical and low-angle wells if completed open hole. The results are used for sand management in existing wells and completion decisions for future wells. A combination of passive surface handling and downhole sand control methods are considered on a well-by-well basis. Existing producers are currently monitored for sand production using acoustic detectors. For full field development, sand catchers will also be installed as required to ensure sand production is quantified and managed.


2015 ◽  
Author(s):  
Pungki Ariyanto ◽  
Mohamed Ahmed Najwani ◽  
Yaseen Najwani ◽  
Hani Al Lawati ◽  
Jochen Pfeiffer ◽  
...  

2021 ◽  
Author(s):  
Yuan Liu ◽  
Bin Li ◽  
Hongjie Zhang ◽  
Fan Yang ◽  
Guan Wang ◽  
...  

Abstract The economics of tight gas fields highly depend on the consistency between expected production and the actual well performance. A mismatch between the reservoir quality and the well production often leads to a review of the individual well. However, such mismatch may vary from case to case, and it is hard to perform a field-level analysis based on individual well reviews. We introduce a new method based on data mining to assist the field-level diagnosis. LX gas field is located the in eastern Ordos basin. Compared to the main gas field in the center of the basin, LX field is less predictable in well performance. This predictability issue hinders field development in LX field because the field economics are substantially jeopardized by the inconsistency between the reservoir quality and the production performance. The traditional workflow to understand this issue at the field level is to review the details of a large number of individual wells in the area. This is typically an intense task, and too much detail from multiple disciplines may hide the true pattern of the field behavior. To resolve this issue, we applied data mining in our field development diagnosis workflow. Our new workflow in LX area started with the existing field datasheet, including logging summaries, completion treatment reports, and flowback testing datasheets. With the data extracted from these different sources, we visualized the consolidated information in various plots and graphs based on regression analysis, which revealed the relation between flowback ratio and the production, the flowback rate consistency from the different service suppliers, and the impact of water productions. The data mining approach helped to generate new understandings in LX gas field. With the in-depth analysis of the flowback data together with reservoir properties and operation parameters, the key problems in the field were identified for further development optimization, and the field economics can be significantly improved. The diagnosis method can be easily adapted and applied to any field with similar problems, and data mining can be useful for almost all large-scale field development optimizations.


Sign in / Sign up

Export Citation Format

Share Document