Recent Advances in Supercritical CO2 Fracturing: New Theory, New Technology, and Application

2021 ◽  
Author(s):  
Wenguang Duan ◽  
Baojiang Sun ◽  
Deng Pan ◽  
Jianchun Xu ◽  
Jian Liu

Abstract The shale oil reservoir in Jimusaer has the characteristics of low porosity and low permeability, resulting in significant resistance in oil flow compared with conventional oil reservoirs. Fracturing is needed to increase shale oil production. Supercritical CO2 (SC-CO2) is an ideal choice for fracturing fluid due to its unique physical and chemical properties. SC-CO2 fracturing is able to make CO2 flow into microfractures and greatly reduce the pumping pressure. New progress has been made in the application of the supercritical CO2 fracturing technology in Jimusaer. A phase control model of SC-CO2 fracturing as a function of temperature and pressure is established, which takes into account the SC-CO2 features, intrinsic energy, flow behavior in fracture and fluid filtration. In this paper, the influences of injection pressure and temperature, injection rate, temperature-pressure field, temperature gradient, and phase behavior are analyzed extensively, in addition, the phase control model and its chart of fracture are presented. The proppant accumulation height reduces by a small amount with the increase of the fracturing fluid injection rate. It is necessary to improve the proppant pumping technology by the sand embankment section and proppant concentration. The liquid transforms into supercritical fluid, when flowing in wellbores and fractures. Different fractures have different phase points, and a lower injection temperature is affected by higher injection rate, lower temperature gradient and closer position from transformation point to the end of fracture. Therefore, in order to achieve a better fracturing effect, the injection temperature, pressure, and rate need to be optimized by surface equipment according to the reservoir conditions, to control the phase behavior of CO2. We built a phase control model for the SC-CO2 fracturing technology, which considers temperature control. We also developed some new techniques to improve SC-CO2 fracturing which is critically needed in the Jimusaer oilfield.

2021 ◽  
pp. 014459872110204
Author(s):  
Wan Cheng ◽  
Chunhua Lu ◽  
Guanxiong Feng ◽  
Bo Xiao

Multistaged temporary plugging fracturing in horizontal wells is an emerging technology to promote uniform fracture propagation in tight reservoirs by injecting ball sealers to plug higher-flux perforations. The seating mechanism and transportation of ball sealers remain poorly understood. In this paper, the sensitivities of the ball sealer density, casing injection rate and perforation angle to the seating behaviors are studied. In a vertical wellbore section, a ball sealer accelerates very fast at the beginning of the dropping and reaches a stable state within a few seconds. The terminal velocity of a non-buoyant ball is greater than the fluid velocity, while the terminal velocity of a buoyant ball is less than the fluid velocity. In the horizontal wellbore section, the terminal velocity of a non-buoyant or buoyant ball is less than the fracturing fluid flowing velocity. The ball sealer density is a more critical parameter than the casing injection rate when a ball sealer diverts to a perforation hole. The casing injection rate is a more critical parameter than the ball sealer density when a ball sealer seats on a perforation hole. A buoyant ball sealer associated with a high injection rate of fracturing fluid is highly recommended to improve the seating efficiency.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Jingwei Huang ◽  
Hongsheng Wang

Confined phase behavior plays a critical role in predicting production from shale reservoirs. In this work, a pseudo-potential lattice Boltzmann method is applied to directly model the phase equilibrium of fluids in nanopores. First, vapor-liquid equilibrium is simulated by capturing the sudden jump on simulated adsorption isotherms in a capillary tube. In addition, effect of pore size distribution on phase equilibrium is evaluated by using a bundle of capillary tubes of various sizes. Simulated coexistence curves indicate that an effective pore size can be used to account for the effects of pore size distribution on confined phase behavior. With simulated coexistence curves from pore-scale simulation, a modified equation of state is built and applied to model the thermodynamic phase diagram of shale oil. Shifted critical properties and suppressed bubble points are observed when effects of confinement is considered. The compositional simulation shows that both predicted oil and gas production will be higher if the modified equation of state is implemented. Results are compared with those using methods of capillary pressure and critical shift.


2021 ◽  
Vol 60 (3) ◽  
pp. 1463-1472
Author(s):  
Zhaojie Song ◽  
Yilei Song ◽  
Jia Guo ◽  
Dong Feng ◽  
Jiangbo Dong

2014 ◽  
Vol 53 (32) ◽  
pp. 12830-12838 ◽  
Author(s):  
Cristina Gutiérrez ◽  
Juan Francisco Rodríguez ◽  
Ignacio Gracia ◽  
Antonio de Lucas ◽  
M. Teresa García

1997 ◽  
Vol 46 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Hiromasa SUZUKI ◽  
JUN Chen ◽  
Tadafumi ADSCHIRI ◽  
Hiroshi INOMATA ◽  
Kunio ARAI

Sign in / Sign up

Export Citation Format

Share Document