Geomechanical Implications of Reservoir Depletion vis-à-vis Post-Blowout Well Capping: A Gulf of Mexico Case Study

2021 ◽  
Author(s):  
Andreas Michael

Abstract Reservoir depletion can impose major implications on wellbore integrity following blowouts. A loss-of-well-control event can lead to prolonged post-blowout discharge from the wellbore causing considerable reservoir depletion in a well's drainage area. Fractures initiated and propagated during well capping procedures following an offshore blowout can lead to reservoir hydrocarbons broaching the seafloor. In this paper, reservoir depletion is examined for a case study on actual deepwater Gulf of Mexico (GoM) parameters, evaluating analytically its impacts on in-situ reservoir conditions, hence assessing the likelihood of longitudinal or transverse fracture initiation during post-blowout well capping. The reservoir rock is modeled as a porous-permeable medium, considering fluid infiltration from the pressurized wellbore. A novel analytical workflow is presented, which encompasses the major effects of reservoir depletion on the (i) in-situ stress state, (ii) range of in-situ stress states stable against shear fault slippage, and (iii) limits of tensile fracture initiation. The geomechanical implications of each individual effect on post-blowout well capping is discussed with the individual results illustrated and analyzed altogether on dimensionless plots. These plots are useful for engineers when making contingency plans for dealing with loss-of-well-control situations. The workflow is demonstrated on a case study on parameters taken from the M56 reservoir, where the April 20, 2010 blowout took place at the MC 252-1 "Macondo" well. A smaller post-blowout discharge flowrate is shown to increase the shut-in wellbore pressure build-up at any given time-point following well capping, whereas an increased post-blowout discharge period leads to a lower shut-in wellbore pressure build-up, hence reducing the likelihood of a fracture initiation scenario and vice versa. Assuming a robust wellbore architecture, the most likely location of fracture initiation is the top of the M56 reservoir within the openhole section of the Macondo well. The critical discharge flowrate, an established indicator for fracture initiation during well capping using information from the post-blowout discharge stage is employed, pointing that fracture initiation is highly-unlikely for the assessed parameters. Nevertheless, fracture initation during post-blowout well capping remains a real possibility in the overpressurized, stacked sequences of the GoM. Finally, the model is extended to an "incremental"/multi-step capping stack shut-in imposed over a longer time-period (e.g. 1 day than abruptly over a single-step) to suppress the wellbore pressure build-up, if necessary to avoid fracture initiation.

2020 ◽  
pp. 1-13
Author(s):  
Andreas Michael ◽  
Ipsita Gupta

Summary Following uncontrolled discharge during loss of well control events, fracture initiation occurring during the post-blowout capping stage can lead to reservoir fluids broaching to the seafloor. A classic example is Union Oil's 1969 oil spill in Santa Barbara Channel, where fracture initiation at various locations caused thousands of gallons per hour to broach onto the ocean floor over a month before it could be controlled (Mullineaux 1970; Easton 1972). Disasters such as these could be prevented if the effects of the post-blowout loss of well control stages (uncontrolled discharge and capping) are incorporated into the shut-in procedures, and the wellbore architectures are modified accordingly. In this study, analytical models are used to simulate the loads on the wellbore during the different stages of loss of control. Capping pressure buildup during the shut-in is modeled to indicate fracture initiation points during the capping stage. Using these models, the critical capping pressure for a well is determined, and subsequent critical discharge flow rates are calculated. Fracture initiation would occur if the actual discharge flow rate is below the calculated critical discharge flow rate. A hypothetical case study using typical deepwater Gulf of Mexico (GOM) parameters is performed demonstrating the likelihood of fracture initiation during different discharge flow rates, discharge periods, and capping stack shut-in methods (single-step/“abrupt” or multistep/“incremental”). An abrupt shut-in for this case study leads to fracture initiation at approximately 8 hours after shut-in, while a five-step incremental shut-in is shown to prevent any fracture initiation during the 48 hours after the beginning of the shut-in. Reservoir depletion through longer discharge periods or higher discharge flow rates, despite the adverse environmental effect, can delay or even prevent fracture initiations during post-blowoutcapping. The ability to model these fracture failures enhances the understanding of wellbore integrity problems induced during loss of control situations and helps create workflows for predicting possible broaching scenarios during the post-blowout capping stage. Dimensionless plots are used to present fracture initiation for different cases—this is useful for drilling and wellbore integrity engineers for making contingency plans for dealing with loss of well control situations.


2020 ◽  
Vol 38 (6) ◽  
pp. 2436-2465
Author(s):  
Peihuo Peng

Reservoir rock contains many multi-scale, unevenly distributed pores, and the pore structures of shale in different reservoirs and geological environments vary greatly. Because the seepage velocity and pressure field are related to the pore spatial variations, the inhomogeneity of the seepage is superimposed on the anisotropy of the rock’s physical properties, which will affect the distribution of the induced cracks. A method for calculating the pore size in the bonded particle model, based on Delaunay triangulation, is proposed. A modeling approach capable of simulating the multi-scale pore distribution of actual rock is presented based on the proposed method. To understand how microcracks connect micropores in the process of fracturing, several bonded particle model samples with different pore structures were established, and numerical experiments were conducted based on the coupling calculation of the discrete seepage algorithm and discrete element method. The focus of this study was on the interactions between the distribution characteristics of multi-scale pores, the specific physical properties of the fracturing fluid, and the distribution differences of the induced cracks caused by the special seepage characteristics when using different fracturing fluids. The numerical results showed that the advantages of supercritical CO2 fracturing are maximized in deep reservoirs (high in-situ stress) and that a suitable in-situ stress condition is required (i.e. a stress ratio close to 1).


2010 ◽  
Vol 29-32 ◽  
pp. 1369-1373
Author(s):  
Wan Chun Zhao ◽  
Ting Ting Wang ◽  
Guo Shuai Ju

The mechanical distribution of refracturing rock around well is Considered, the induced stress of vertical fractured well changes in pore pressure is first to establish, taking into account the fluid compressibility, the introduction of the initial artificial fracture fluid factor, an evolution model of in-situ stress is built up for initial fracture. Consider the impact of temperature on the reservoir rock, an evolution model of the temperature induced stress model is built up, Combined with in-situ stress field, an evolution model of Mechanical determination conditions of re-fracture well create new fracture is built up. Calculation of a block of Jilin Oilfield injection wells by the three effects of stress around an oil well, the theoretical calculation results are consistent with the field.


2017 ◽  
Vol 21 (7) ◽  
pp. 2946-2957 ◽  
Author(s):  
Peng Yan ◽  
Qi He ◽  
Wenbo Lu ◽  
Yanli He ◽  
Wei Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document