A displacement-based back-analysis method for rock mass modulus and horizontal in situ stress in tunneling – Illustrated with a case study

2006 ◽  
Vol 21 (6) ◽  
pp. 636-649 ◽  
Author(s):  
L.Q. Zhang ◽  
Z.Q. Yue ◽  
Z.F. Yang ◽  
J.X. Qi ◽  
F.C. Liu
2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


1996 ◽  
Vol 33 (2) ◽  
pp. 363-370 ◽  
Author(s):  
C Derek Martin ◽  
Neil A Chandler ◽  
Rodney S Read

Convergence measurements were taken during the construction of a circular shaft in massive granite. The convergence results were used to back-calculate the in situ horizontal stress orientation and magnitudes. The results from the convergence method were supported by other measurement techniques and numerical modelling. Key words: convergence, in situ stress, back-analysis.


2012 ◽  
Vol 462 ◽  
pp. 468-473
Author(s):  
Ze Zhang ◽  
Tong Bin Zhao ◽  
Yun Liang Tan ◽  
Chong Guang Zhang

In order to obtain the stress distribution in deep level of Datai mine, a nonlinear back analysis method for rock mechanical parameters was proposed by combining genetic algorithm and FLAC3D (GA-FLAC3D). First the hollow inclusion stress gauge (stress relieving method) was used to complete the measurement of local in-situ stress; and then the rock mechanical parameters were obtained by using back analysis; at last the ground stress in deep level was obtained. The results showed, this method is quick in calculation, and has global convergence. The convergence accuracy of normal stress is about 90%.


2017 ◽  
Author(s):  
◽  
Cassidy Mathews

Rock mass modulus can be a useful property in the design of foundations. Rock mass modulus is defined as the stress strain response of a rock mass in-situ. The stress strain response of the rock mass can be estimated by directly measuring the stress strain relationship via in-situ field tests, such as the pressuremeter, or it can be estimated from the results of laboratory intact specimen tests. Intact laboratory test results are often reduced to account for imperfections or discontinuities and other properties of the rock mass that may be present in the entire system, but are not easily replicated in the lab. The rock mass modulus can be used to design piles, drilled shafts and shallow foundations that are typically employed on Missouri Department of Transportation projects. Most current methods of estimating this modulus requires coring and sampling the material, transporting samples back to a lab with appropriate equipment, extruding and preparing samples and finally performing triaxial tests and estimating the modulus from the resulting stress strain curves. Shale formations found in Missouri are typically sensitive to changes in moisture content and disturbance from sampling and sample preparation. Generally lab tests are only performed on samples that can withstand the disturbances associated with sampling and preparation. Therefore lab tests generally yield values of intact modulus and the insitu rock mass modulus must be estimated or implied from these results. The pressuremeter test (PMT) offers a potentially better method to assess the in-situ rock mass modulus. The PMT allows testing of difficult to sample materials, e.g., shale, under in-situ stress and structure conditions resulting in a modulus more representative of the shale mass. Pressuremeter tests were performed at five sites in Missouri and the results were reduced to yield rock mass modulus. Intact samples of shale recovered from each site and returned to the laboratory for unconsolidated undrained and unconfined triaxial tests to yield intact modulus values. In general, the modulii from the intact specimens were equal to or less than the in-situ modulii measured using the pressuremeter. In these practical cases, the modulii from the intact specimens did not require any reduction to provide rock mass modulus. Rather, the modulii from the intact specimens could be used directly as the rock mass modulii. This result is surprising, but not unheard of.


2011 ◽  
Vol 90-93 ◽  
pp. 2033-2036 ◽  
Author(s):  
Jin Shan Sun ◽  
Hong Jun Guo ◽  
Wen Bo Lu ◽  
Qing Hui Jiang

The factors affecting the TBM tunnel behavior in jointed rock mass is investigated. In the numerical models the concrete segment lining of TBM tunnel is concerned, which is simulated as a tube neglecting the segment joint. And the TBM tunnel construction process is simulate considering the excavation and installing of the segment linings. Some cases are analyzed with different joint orientation, joint spacing, joint strength and tunnel depth. The results show that the shape and areas of loosing zones of the tunnel are influenced by the parameters of joint sets and in-situ stress significantly, such as dip angle, spacing, strength, and the in-situ stress statement. And the stress and deformation of the tunnel lining are influenced by the parameters of joint sets and in-situ stress, too.


2013 ◽  
Vol 734-737 ◽  
pp. 759-763 ◽  
Author(s):  
Yong Li ◽  
Yun Yi Zhang ◽  
Ren Jie Gao ◽  
Shuai Tao Xie

Jixi mine area is one of the early mined areas in China and it's a typical deep mine. Because of large deformation of underground roadway and dynamic disasters occurred frequently in this mine, five measurement points of in-situ stress in this mine was measured and then analyzed with inversion. Based on these in-situ stress measurement data, numerical model of 3D in-situ stress back analysis was established. According to different stress fields, related analytical samples of neural network were given with FLAC program. Through the determination of hidden layers, hidden nodes and the setting of parameters, the network was optimized and trained. Then according to field measurement of in-situ stress, back analysis of initial stress field was conducted. Compared with field measurement, with accuracy requirement satisfied, it shows that the in-situ stress of rock mass obtained is basically reasonable. Meanwhile, it proves that the measurement of in-situ stress can provide deep mines with effective and rapid means, and also provide reliable data to optimization of deep roadway layout and supporting design.


Sign in / Sign up

Export Citation Format

Share Document