Cementless Well Construction Opens the Full Control on Well Integrity for the Life of the Well

2021 ◽  
Author(s):  
Catalin Teodoriu ◽  
Opeyemi Bello ◽  
R. R. Vasquez ◽  
Ryan M. Melander ◽  
Yosafat Esquitin

Abstract Well construction has relied on two main elements, casing and cement, to achieve the well goals while maintaining the highest possible well integrity. Can cementless well construction achieve similar goals? This paper is investigating the various well construction concepts proposed over the years and will analyze the cement's ability to withstand long term well loads. First, a review of various well construction concepts such as slimhole, conventional, pre-salt and horizontal wells. We will normalize the casing to cement thickness ratio by validating and proposing a simple mathematical calculation for establishing this ratio. Our calculations have shown that in the case of slimhole well concept, the thin cement sheath cannot serve as a strong well barrier as defined by current standards, and thus a new solution might be necessary. The second part will look at current new trends in wellbore construction that include external casing packers and other solutions such as metallic wellbore isolation solutions. Hydraulically expanded metal packers are a robust and reliable alternative to cement. They are each mounted to a casing joint and can be rotated while running in hole. They have a proven deployment track record of high diametrical expansion, conforming to the wellbore geometry, while isolating differential pressures more than 15,000psi. Exploration of load carrying capabilities will be completed using Finite Element Analysis (FEA), simulating the different well scenarios as described in the previous paragraph. This will enable us to establish which well types can use this novel technology for the replacement of cement. The paper will conclude with one possible solution that could be used to mitigate cement problems by shifting the well construction concept to a cementless new era. Also, understanding that the cement manufacturing process is highly CO2 intensive, emissions per well could be reduced through the newly proposed concept.


2021 ◽  
Author(s):  
Wajid Ali ◽  
Freddy Jose Mata ◽  
Ahmed Atef Hashmi ◽  
Abdullah Saleh Al-Yami

Abstract Assurance of well integrity is critical and important throughout the entire well's life cycle. Pressure build-up between cemented casings annuli has been a major challenge all around the world. Cement is the main element that provides isolation and protection for the well. The cause for pressure build-up in most cases is a compromise of cement sheath integrity that allows fluids to migrate through micro-channels from the formation all the way to the surface. These problems prompt cementing technologists to explore new cementing solutions, to achieve reliable long-term zonal isolation in these extreme conditions by elevating shear bond strength along-with minimal shrinkage. The resin-cement system can be regarded as a novel technology to assure long term zonal isolation. This paper presents case histories to support the efficiency and reliability of the resin-cement system to avoid casing to casing annulus (CCA) pressure build-up. This paper presents lab testing and application of the resin-cement system, where potential high-pressure influx was expected across a water-bearing formation. The resin-cement system was designed to be placed as a tail slurry to provide a better set of mechanical properties in comparison to a conventional slurry. The combined mixture of resin and cement slurry provided all the necessary properties of the desired product. The slurry was batch-mixed to ensure the homogeneity of resin-cement slurry mixture. The cement treatment was performed as designed and met all zonal isolation objectives. Resin-cement’s increased compressive strength, ductility, and enhanced shear bond strength helped to provide a dependable barrier that would help prevent future sustained casing pressure (SCP). The producing performance of a well depends in great part on a good primary cementing job. The success of achieving zonal isolation, which is the main objective of cementing, is mainly attributed to the cement design. The resin-cement system is evolving as a new solution within the industry, replacing conventional cement in many crucial primary cementing applications. This paper highlights the necessary laboratory testing, field execution procedures, and treatment evaluation methods so that this technology can be a key resource for such operations in the future. The paper describes the process used to design the resin-cement system and how its application was significant to the success of the jobs. By keeping adequate strength and flexibility, this new cement system mitigates the risk of cement sheath failure throughout the life of well. It provides a long-term well integrity solution for any well exposed to a high-pressure environment.



2021 ◽  
Author(s):  
Amanmammet Bugrayev ◽  
Ravindra Kumar Singh ◽  
Svetlana Nafikova ◽  
Ilshat Akhmetzianov ◽  
Guvanch Gurbanov ◽  
...  

Abstract Long-term well integrity and zonal isolation are the ultimate objectives for cementing in the well construction process. Effective mud removal plays an essential role in obtaining competent zonal isolation and hence should not be overlooked and underestimated. The negative consequences of poor mud removal can lead to microannulus, channeling, or gas migration, which might require costly time-consuming remediation. The conventional approach of optimizing spacers based on chemical interactions with the mud layer does not always yield desired results and, thus, demanding further improvement. In this paper we discuss the approach taken to boost the mud removal efficiency by implementing an innovative engineered scrubbing spacer containing fibers in a challenging environment, resulting in notable improvement in long-term cement sheath integrity. The engineered scrubbing fibers were thoroughly tested in the laboratory to ensure spacer stability and efficiency. The new spacer with an additional scrubbing capability was introduced to one of the major operators on the Caspian shelf and after successful implementation, it has now been used on more than 20 cementing operations. Scrubbing fibers concentration was optimized through thorough laboratory testing covering flowability, dispersibility, and mud removal efficiency; later, it was applied on most of the cement operations, including 4½-in. liners characterized by a very narrow annular gap across the hanger sections. Cement evaluation log results from those cementing operations demonstrated an improvement in mud removal efficiency, suggesting no issues associated with microannulus, channeling, or gas migration, thus confirming the effectiveness of the newly implemented engineered scrubbing spacer. The typical challenges associated with meeting the zonal isolation requirement on one of the offshore fields of the Caspian shelf, and the success of the approach taken to overcome those challenges by implementing the new engineered scrubbing spacer are discussed. The comparison of cement bond evaluation log results of the jobs where conventional spacer systems were used vs. those where the spacer with scrubbing capability was used are also presented, demonstrating the clear difference and improvement.





2014 ◽  
Author(s):  
V.. Reveth ◽  
R.. Giron Rojas ◽  
N.. Gupta ◽  
E.. Gonzaga

Abstract In a deepwater environment, any remedial operation has a high impact on the overall costs during the life of the wells. The zonal isolation can be compromised due to the exposure of the well's main components (casing and cement) to the changes in the stress conditions. The changes in wellbore conditions can occur during the drilling, production, intervention, and decommissioning stages. Typically, conditions such as fluid pathway and high formation pressure are sufficient to lose zonal isolation. The fluid pathway can be a fissure, an induced crack in the cement sheath, a mud channel, a micro-microannulus, or changes in the cement matrix permeability. As a result of the oil industry technology developments, progresses, the advanced stress-modelling software and the availability of cement and rock properties property data have enabled to an improved understanding of the cement behavior under stress. Prevention of the loss of the hydraulic isolation provided by the primary cementing in the annulus can be assessed by predicting the mechanical failure of the cement sheath. Formation geo-mechanics is one of the main factors that help in designing a robust cement system for changing stresses. Furthermore, the consequence result of the cement sheath failure can be mitigated by the placement of placing a self-healing cement (SHC) system to maintain long-term zonal isolation. An interdisciplinary approach can be used to determine the following: Understand the impact of the well plan, and fluid densities on well integrity, in addition to cementing best practices.Characterize typical deepwater field formations, and establish limits for geo-mechanical values of each layer.Identify critical factors and focus on the pay zones.Understand potential issues and communication between the pay zones and the aquifers that are already previously confirmed.Determine risk of zonal communication assessment, mitigation, and prevention measurement implementations Once the formation data is validated by the operator, the life cycle of the well is simulated and the risk of zonal isolation can be evaluated. The results of this assessment can help the operator choose between to take the approach of mitigation, prevention, or a combination of both. The objective is to place a robust cement sheath with advanced mechanical performance in the pay zones that can resist the failures due to changing stresses during the well testing and production. This paper uses presents examples from a deepwater development field to show how cement systems with advanced mechanical properties counter the critical stresses during the lifecycle of a well and maintain zonal isolation.



1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.





2021 ◽  
Vol 22 (4) ◽  
pp. 2157
Author(s):  
Anila Duni ◽  
Vassilios Liakopoulos ◽  
Vasileios Koutlas ◽  
Charalampos Pappas ◽  
Michalis Mitsis ◽  
...  

The damage of the endothelial glycocalyx as a consequence of ischemia and/or reperfusion injury (IRI) following kidney transplantation has come at the spotlight of research due to potential associations with delayed graft function, acute rejection as well as long-term allograft dysfunction. The disintegration of the endothelial glycocalyx induced by IRI is the crucial event which exposes the denuded endothelial cells to further inflammatory and oxidative damage. The aim of our review is to present the currently available data regarding complex links between shedding of the glycocalyx components, like syndecan-1, hyaluronan, heparan sulphate, and CD44 with the activation of intricate immune system responses, including toll-like receptors, cytokines and pro-inflammatory transcription factors. Evidence on modes of protection of the endothelial glycocalyx and subsequently maintenance of endothelial permeability as well as novel nephroprotective molecules such as sphingosine-1 phosphate (S1P), are also depicted. Although advances in technology are making the visualization and the analysis of the endothelial glycocalyx possible, currently available evidence is mostly experimental. Ongoing progress in understanding the complex impact of IRI on the endothelial glycocalyx, opens up a new era of research in the field of organ transplantation and clinical studies are of utmost importance for the future.



Author(s):  
Tomoya Susa ◽  
Ryosuke Nansai ◽  
Norimasa Nakamura ◽  
Hiromichi Fujie

Since the healing capacity of articular cartilage is limited, it is important to develop cell-based therapies for the repair of cartilage. Although synthetic or animal-derived scaffolds are frequently used for effective cell delivery long-term safety and efficiency of such scaffolds still remain unclear. We have been studying on a scaffold-free tissue engineered construct (TEC) bio-synthesized from synovium-derived mesenchymal stem cells (MSCs) [1]. As the TEC specimen is composed of cells with their native extracellular matrix, we believe that it is free from concern regarding long term immunological effects. our previous studies indicated that a porcine partial thickness chondral defect was successfully repaired with TEC but that the compressive property of the TEC-treated cartilage-like repaired tissue was different from normal cartilage in both immature and mature animals. Imura et al. found that the permeability of the immature porcine cartilage-like tissues repaired with TEC recovered to normal level for 6 months except the superficial layer [2]. Therefore, the present study was performed to determine the depth-dependent permeability of mature porcine cartilage-like tissue repaired with TEC. Moreover, we investigated the effect of difference of permeability on the compressive property of articular cartilage using a finite element analysis (FEM).



2009 ◽  
Vol 2009 (4) ◽  
pp. 314-321 ◽  
Author(s):  
M. M. Kantor ◽  
V. N. Voronin ◽  
V. A. Bozhenov ◽  
V. G. Antonov ◽  
Yu. M. Sharygin


Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.



Sign in / Sign up

Export Citation Format

Share Document