Approach to Nav Aids System on Islands

2021 ◽  
Author(s):  
Khalil Ibrahim Alblooshi ◽  
Kamaljit Singh ◽  
Raju Paul ◽  
Faris Ragheb Kamal

Abstract Offshore business is gradually moving from traditional Well Head Platforms to the concept of Artificial Drill Islands and use of renewable energy sources. Navigational Aids design for artificial drilling islands has unique challenges due to vast periphery. This paper highlights all such challenges along with recommendations for a reliable and cost effective solution. Clients as well as FEED/EPC Contractors can benefit from the experience shared in this paper. The trend over the last decade has been to develop Navigation Aids that minimize maintenance requirements whilst maintaining stable and satisfactory performance. Although, Navigation Aids are automated there is still a need for regular visual inspections as there is always the risk of vandalism, ship impact or damage during significant storm events. Navigational Aids System shall be in strict compliance with International Association of Lighthouse Authorities (IALA) Guidelines. In addition to usual Visual & Audible Navigations Aids, artificial islands require break water lanterns (both red & green type). Also, number of Navigational Aids is much more than those required for a typical offshore platform. Requirement of interfaces with remote ends need to be clearly defined as these have impact on the design and ultimate cost. GSM monitoring and control system, GPS synchronization & AIS remote monitoring shall be considered. Cabling over the Island periphery is neither reliable nor cost effective solution. Standalone solar power based Navigational Aids Skids with all control and monitoring facilities can be more suitable solution. Considering that Island Contractor provides few Navigational Aids before the mobilization of EPC Contractor, it is essential to coordinate the Navigational Aids design aspects to ensure synergy in terms of compatibility.

Author(s):  
Nelson Pinto ◽  
Dario Cruz ◽  
Jânio Monteiro ◽  
Cristiano Cabrita ◽  
Jorge Semião ◽  
...  

In many countries, renewable energy production already represents an important percentage of the total energy that is generated in electrical grids. In order to reach higher levels of integration, demand side management measures are yet required. In fact, different from the legacy electrical grids, where at any given instant the generation levels are adjusted to meet the demand, when using renewable energy sources, the demand must be adapted in accordance with the generation levels, since these cannot be controlled. In order to alleviate users from the burden of individual control of each appliance, energy management systems (EMSs) have to be developed to both monitor the generation and consumption patterns and to control electrical appliances. In this context, the main contribution of this chapter is to present the implementation of such an IoT-based monitoring and control system for microgrids, capable of supporting the development of an EMS.


2011 ◽  
Vol 36 (1) ◽  
pp. 63-72 ◽  
Author(s):  
José A. Chica ◽  
Inés Apraiz ◽  
Peru Elguezabal ◽  
Marc O. Rrips ◽  
Victor Sánchez ◽  
...  

KUBIK is aimed to the development of new concepts, products and services to improve the energy efficiency of buildings. The main characteristic of KUBIK is the capability to built realistic scenarios to analyse the energy efficiency obtained from the holistic interaction of the constructive solution for the envelope, the intelligent management of the climatisation and lighting systems and the supply from renewable energy sources. The R&D infrastructure consists of a building able to provide up to 500 m2 distributed in an underground floor, a ground floor and up to two storeys; the main dimensions are 10,00 m. width x 10,00 m. length x 10,00 meter high (plus and underground floor 3,00 m. depth). The supply of energy is based on the combination of conventional and renewable energy (geothermic, solar and wind). In addition, the building is equipped with a monitoring and control system which provides the necessary information for the R&D activities. KUBIK's main structure provides an experimental, adaptable and reconfigurable infrastructure to create the indoor environments to analyse and to allow the assembly of the constructive solutions for the envelope, floors and partitions which performance must to be assessed under realistic conditions.


2022 ◽  
pp. 843-868
Author(s):  
Nelson Pinto ◽  
Dario Cruz ◽  
Jânio Monteiro ◽  
Cristiano Cabrita ◽  
Jorge Semião ◽  
...  

In many countries, renewable energy production already represents an important percentage of the total energy that is generated in electrical grids. In order to reach higher levels of integration, demand side management measures are yet required. In fact, different from the legacy electrical grids, where at any given instant the generation levels are adjusted to meet the demand, when using renewable energy sources, the demand must be adapted in accordance with the generation levels, since these cannot be controlled. In order to alleviate users from the burden of individual control of each appliance, energy management systems (EMSs) have to be developed to both monitor the generation and consumption patterns and to control electrical appliances. In this context, the main contribution of this chapter is to present the implementation of such an IoT-based monitoring and control system for microgrids, capable of supporting the development of an EMS.


2019 ◽  
pp. 37-47
Author(s):  
Yao Yueqin ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

Analysis and formalization of the monitoring and automatic control tasks of the MR for the movement and execution of various types of technological operations on inclined and vertical ferromagnetic surfaces are obtained. Generalized structure of mobile robotic complex is shown with main subsystems consideration. Critical analysis of the current state of the problem of development of universal structures of mobile robots (MRs) for the various types of technological operations execution and elaborations of computerized systems for monitoring and control of MR movement is done. In particular, wheeled, walked and crawler type MRs with pneumatic, vacuum-propeller, magnetic and magnetically operated clamping devices to grip with vertical and ceiling surfaces are reviewed. The constructive features of the crawler MR with magnetic clamping devices capable of moving along sloping ferromagnetic surfaces are considered. The basic technical parameters of the MR are shown for the further synthesis of computerized monitoring and automatic control systems. Formalization of the tasks of monitoring and control of the MR positioning at the processing of large area ferromagnetic surfaces is considered from the point of view of control theory.


2019 ◽  
pp. 41-48
Author(s):  
Yan Guojun ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

The article renders the special features of the design of a tracked mobile robot (MR) for moving over inclined ferromagnetic surfaces while performing specified technological operations. There is conducted a synthesis of the functional structure and selective technological parameters (such as control coordinates) of the computerized monitoring and control system (CMCS) intended for use with this MR. Application of the CMCS with the proposed functional structure allows substantially increasing the accuracy of the MR monitoring and control, which in turn provides for a considerable enhancement in the quality and economic efficiency of the operations on processing of large ferromagnetic surfaces.


Sign in / Sign up

Export Citation Format

Share Document